А. Х. Синельников электроника в автомобиле




Скачать 1.33 Mb.
Название А. Х. Синельников электроника в автомобиле
страница 6/11
Дата публикации 26.05.2014
Размер 1.33 Mb.
Тип Документы
literature-edu.ru > Лекции > Документы
1   2   3   4   5   6   7   8   9   10   11

Приставка к электронному блоку конденсаторной системы зажигания


с непрерывным накоплением энергии для получения многократного искрообразования
Приставка обеспечивает получение многократного искрообразования в режиме пуска двигателя стартером. Первая искра возникает, как и обычно, после размыкания контактов прерывателя, затем следует серия искр до тех пор, пока контакты не замкнутся. Отличительной чертой приставки является отсутствие собственного автогенератора, и частота многократного искрообразо­вания определяется быстродействием самой системы зажигания. Каждая по­следующая искра возникает лишь после того, как накопительный конденсатор полностью заряжается. Если же накопительный конденсатор не успеет полно­стью зарядится, режим многократного искрообразования прекращается и си­стема работает в однократном режиме.

Электрическая принципиальная схема приставки с цепями подключения на автомобиле приведена на рис. 24. Приставка состоит из симметричного триг­гера на транзисторах V4, V7, электронного ключа — эмитатора контактов пре­рывателя — на транзисторах VT0, VII и импульсного инвертора на транзисто­ре V3. К электронному блоку приставка подключается, как показано на рис. 24. На рис. 24 элементы электронного блока обозначены так же, как на рис. 21.



Рис. 24. Электрическая схема приставки к электронному блоку конденсаторной системы зажигания с непрерывным накоп­лением энергии для получения многократного искрообразования
Система с приставкой работает следующим образом. Допустим, что в мо­мент подачи питания на приставку выключателем стартера ВСт контакты прерывателя Пр замкнуты {tu рис. 25). После включения питания триггер на транзисторах V4, V9 может установиться в любое состояние. Допустим, что V4 закрыт, a V9 открыт. Такое состояние триггера будем называть первым. При этом транзистор V10 будет закрыт, а транзистор VII открыт через резистор R12. Через резисторы R5, R6 электронного блока и обмотку wl трансформа­тора Т2 протекает ток коллектора транзистора VII, и в магнитопроводе трансформатора накапливается электромагнитная энергия. Если триггер устано­вится во второе устойчивое состояние, транзистор V11 будет закрыт, ток об­мотки wl будет протекать через диод V12 и замкнутые контакты прерывателя. Первое размыкание (tz, рис. 25) контактов прерывателя, если транзистор VI1 открыт, ничего не изменит. При замыкании контактов прерывателя (t3, рис. 25) конденсатор С7 заряжается через переход эмиттер — база транзистора V3, резистор R2 и диод V2. Транзистор V8 на короткое время открывается и положительный импульс с его коллектора через резистор R4, конденсатор С1 и диод V6 поступает на базу транзистора V4. Триггер переключается во второе устойчивое состояние, транзистор V4 открывается, a V9 закрывается. Транзистор V10 открывается через резисторы R9, R11, а транзистор VII закрывается. Ток обмотки wl трансформатора Т1 теперь протекает через диод V12 и замкнутые контакты прерывателя.



Рис. 25. Временные диаграммы работы системы с приставкой в режиме мно­гократного искрообразования
В момент размыкания контактов прерывателя, как и обычно, в системе происходит искрообразование (t4, рис. 25). Кроме того, положительный им­пульс, образующийся при этом в обмотке wl трансформатора Т1, проходит через конденсатор С5, диод V7 и резистор R7 к базе транзистора V9, и триггер снова переключается в первое устойчивое состояние. Транзистор V9 открывается, и, следовательно, открывается транзистор VII, что равносильно замыканию контактов прерывателя. Через обмотку wl трансформатора Т1 начинает протекать коллекторный ток транзистора VII.

После прекращения искрообразования в свече зажигания (U, рис. 25) преобразователь начинает работать и в момент t& заряжает накопительный конденсатор до заданного напряжения 350 — 360 В. Как только это произойдет, стабилитрон VII (рис. 21) устройства стабилизации электронного блока от­крывается, транзисторы V12 — V14 релейного усилителя переключаются, причем транзистор V13 закрывается, и напряжение на его коллекторе скачком ста­новится положительным. Положительный импульс с коллектора транзистора V13 через конденсатор СЗ и диод V6 поступает на базу транзистора V4. Триггер переключается во второе устойчивое состояние — транзистор V4 от­крывается, а транзисторы V9 и VII закрываются. Закрывание транзистора VII равносильно размыканию контактов прерывателя. В системе возникает вторая искра. Одновременно положительный импульс с коллектора транзисто­ра VII через конденсатор С5, диод V7 резистор R7 поступает на базу тран­зистора V9, вследствие чего триггер снова переключается в первое устойчивое состояние (tj на рис. 25). Транзистор V4 закрывается, a V9 открывается. В результате напряжение на коллекторах транзисторов V4, V9, VII имеет вид коротких импульсов длительностью несколько микросекунд. На рис. 25 дли­тельность этих импульсов для большей наглядности условно увеличена.

Описанные процессы многократно повторяются до момента замыкания кон­тактов прерывателя {tg на рис. 25). В этот момент на базу транзистора V4 с коллектора V3 поступает положительный импульс, и триггер переключается во второе устойчивое состояние. Транзистор V4 открывается, а транзисторы V9 и VII закрываются. Однако искра в системе не возникает, так как тран­зистор VII в это время зашунтирован замкнутыми контактами прерывателя, и ток через обмотку wl трансформатора Т1 не прекращается.

Положительный импульс, возникающий на коллекторе транзистора V13 и поступающий на базу транзистора V4 в момент окончания заряда накопи- ; тельного конденсатора . (Т9 на рис. 25), тоже ничего не изменяет, так как триг­гер уже находится во втором устойчивом состоянии.

Таким образом, в режиме многократного искрообразования, когда кон­такты прерывателя разомкнуты, сигналом для каждой последующей искры служит положительный импульс, возникающий на коллекторе транзистора V13 в момент окончания заряда накопительного конденсатора. Если накопи­тельный конденсатор по каким-либо причинам не успеет полностью зарядить­ся до момента замыкания контактов прерывателя и указанный импульс не возникнет, то в момент замыкания контактов благодаря импульсу от инверто­ра на транзисторе V3 триггер переключится во второе устойчивое состояние i и система сможет работать в режиме однократного искрообразования.

Диоды VI, V5, V8 предназначены для разряда конденсаторов С1, СЗ, С5, С7 после окончания действия рабочих импульсов. Резистор R10 и конденсатор ч С6 образуют фильтр низких частот, защищающий приставку от импульсных помех бортовой сети автомобиля, интенсивность которых усиливается во вре­мя работы стартера.

Конструкция и детали. Приставка не имеет элементов, нагревающихся при работе, поэтому все элементы располагают на печатной или монтажной пла­тах из текстолита или гетинакса с контактными лепестками. Плату помеща­ют в металлический кожух или коробку, защищающую от попадания воды и пыли. Приставка может быть собрана также в одном корпусе с электрон­ным блоком, тем более что в этом случае не потребуются дополнительные контакты в штепсельном разъеме. Как видно из рис. 21, контакт 1 РСт в разъеме XI свободен.

В приставке применены резисторы типа МЛТ и конденсаторы любого ти­па с рабочим напряжением не менее 50 В. Электролитический конденсатор С6 должен иметь емкость не менее 20 мкФ и допускать работу при темпе­ратурах от — 30 до +60° С, Например, конденсатор типа К50-6 в данном слу­чае не подходит.

Все указания, приведенные выше по элементам электронного блока и их г возможной замене, остаются в силе в данном случае.

Налаживание и установка на автомобиле. Если приставка собрана пра­вильно и ее детали исправны, то она начинает работать сразу и никакого на­лаживания не требует. Проверку ее работоспособности следует производить совместно с исправным электронным блоком, собранным по схеме рис. 21, при­чем именно тем, с которым приставка будет работать на автомобиле. Это требование связано с необходимостью некоторой доработки электронного блока для работы с приставкой. Необходимо вывести из блока два прово­да — от коллектора транзистора V13 (5) и от контакта 1 разъема XI, кото­рые подключают к одноименным выводам приставки. Подключение приставки производят в соответствии со схемой рис. 24. Провод от прерывателя разры­вают и его концы подключают к выводам приставки 4 и прерывателя Пр.

Проверку работоспособности производят при напряжении питания 12 — 15 В и частоте искрообразования не более 20 Гц (не более 600 об/мин). Сна­чала проверяют работоспособность системы в режиме однократного искрооб­разования, т. е. при разомкнутом выключателе ВСт, после чего включают вы­ключатель ВСт. Ток, потребляемый системой, должен сразу возрасти и дол­жен повыситься тон «писка» преобразователя.

Удобно контролировать работу системы с помощью осциллографа, под­ключив его через делитель напряжения параллельно первичной обмотке ка­тушки зажигания. При работе в режиме однократного искрообразования на экране осциллографа должны наблюдаться импульсы с амплитудой около 350 В, частота следования которых равна частоте размыкания контактов пре­рывателя. При включении выключателя ВСт количество импульсов должно увеличиться (примерно половина периода должна быть заполнена импуль­сами).

Проверку работы приставки можно производить также непосредственно на автомобиле, используя электронный тахометр, измеряющий частоту искро­образования, или же на наличие искры. В последнем случае отсоединяют центральный высоковольтный провод распределителя и приближают его на расстояние 10 — 15 мм к массе двигателя. Вывод блока 1 РСт сначала не подключают. Затем, вращая вал двигателя стартером и наблюдая за искрообра-зованием между центральным проводом и массой, «на ходу» подключают вы­вод 1 РСт. Звук искрообразования и цвет искры должны измениться.

ПРИМЕНЕНИЕ ЭЛЕКТРОНИКИ

В ЭЛЕКТРООБОРУДОВАНИИ

И ВСПОМОГАТЕЛЬНЫХ ПРИБОРАХ АВТОМОБИЛЯ

Экономайзер принудительного холостого хода для автомобилей ВАЗ 2103, 2106, 2121


Как известно, двигатели автомобилей ВАЗ 2105 и 2107 оборудовав ны новой системой питания «Каскад», которая по данным [10] позволяет на-5% повысить экономичность автомобиля при езде по городу.

Основным элементом этой системы является специальное устройство, на­зываемое экономайзером принудительного холостого хода (ЭПХХ), которым снабжен карбюратор. Кроме того, в систему входят электронный блок управ­ления, электропневмоклапан и микровыключатель, устанавливаемый на кар­бюраторе.

Принцип действия системы состоит в том, что в режиме принудительного холостого хода, т. е. при торможении двигателем или при движении под ук­лон с включенной передачей и отпущенной педалью акселератора, подача топ­ливной смеси в двигатель отключается. Это и создает экономию и, кроме то­го, резко снижает токсичность отработавших газов.

Система «Каскад» может быть установлена на любую модель автомоби­ля «Жигули» путем соответствующей замены карбюратора и установки до­полнительных элементов — электронного блока и электропневмоклапана. Одна­ко такой подход не всегда целесообразен в связи с дефицитностью указанных элементов, а также их значительной стоимостью.

Вместе с тем на моделях ВАЗ 2103, 2106, 2121 система, подобная систе­ме «Каскад», может быть установлена без замены карбюратора и без уста­новки пневмоклапана. Дело в том, что карбюратор у этих моделей имеет специальный клапан в системе холостого хода, предназначенный для отклю­чения подачи топливной смеси после выключения зажигания, с целью предо- i твращения калильного зажигания. Этот клапан и может быть использован-: для отключения подачи топливной смеси на принудительном холостом ходу [8, 9].

Предлагаемая система ЭПХХ обладает рядом преимуществ по сравнению с описанными ранее. Принцип работы системы рассмотрим по структурной схе­ме, показанной на рис. 26, на которой: ВЗ — выключатель зажигания; MB — микровыключатель; ЭБ — электронный блок, состоящий из тахометрического реле ТХР и устройства временной задержки УВЗ; ЭК — электромагнитный клапан карбюратора; СД — светодиод.

Контакты MB разомкнуты только тогда, когда педаль акселератора пол­ностью отпущена.




Рис. 26. Структурная схема системы ЭПХХ
Рис. 27. Частотная характеристика тахеометрического реле системы ЭПХХ

Рис. 28. Временные диаграммы работы устройства временной задержки системы ЭПХХ


Тахометрическое реле имеет частотную характеристику, показанную на рис. 27. После включения питания выключателем ВЗ на выходе ТХР сразу же появляется полное напряжение питания 12 В и остается после запуска дви­гателя до тех пор, пока частота вращения коленчатого вала jV не достигнет 1600 об/мин. При достижении этой частоты напряжение на выходе ТХР ис­чезает и при дальнейшем увеличении частоты больше не появляется. При уменьшении частоты вращения вала двигателя напряжение на выходе ТХР появляется при частоте 1200 об/мин, т. е. на 400 об/мин меньшей. Гистерезис характеристики ТХР предотвращает автоколебания частоты вращения вала дви­гателя на режимах работы вблизи частоты переключения.

Напряжение с выхода ТХР поступает на электромагнитный клапан кар­бюратора.ЭК. Кроме того, напряжение на ЭК поступает также с выхода УВЗ, временные диаграммы работы которого показаны на рис. 28.

При подаче напряжения UВХ на вход УВЗ (от микровыключателя MB) такое же напряжение UВЫХ сразу появляется на его выходе (Tf, рис. 28). При снятии же напряжения со входа УВЗ (t2, на рис. 28) напряжение на его вы­ходе исчезает не сразу, а лишь через некоторое время ДТ в момент Т3. Вре­менная задержка AT предотвращает нежелательную остановку двигателя пос­ле резкого отпускания педали акселератора при выключенной трансмиссии, ес­ли до этого частота вращения вала двигателя была больше 1600 об/мин.

Когда педаль акселератора нажата, контакты MB замкнуты и на ЭК от УВЗ поступает напряжение питания. Кроме того, напряжение на ЭК может по­ступать и от ТХР при малой частоте вращения вала двигателя N. При N> > 1600 об/мин напряжение на ЭК поступает только от УВЗ. Однако, если ча­стота вращения вала двигателя N>1600 об/мин, а дроссельная заслонка за­крыта (режим принудительного холостого хода), то напряжение на ЭК вооб­ще не поступает и подача топливной смеси перекрыта.

Принципиальная электрическая схема электронного блока системы ЭПХХ с цепями подключения на автомобиле приведена на рис. 29.

Тахометрическое реле состоит из заторможенного мультивибратора на транзисторах V2, V3, электронного ключа на транзисторе V5, компаратора на микросхеме D1, триггера Шмитта на транзисторах V13, V14 и электронных ключей на транзисторах V15 — V17.

Временные диаграммы работы ТХР приведены на рис. 30. Оно работа­ет следующим образом. После включения питания мультивибратор устанавливается в исходное устойчивое состояние, при котором транзистор V2 от­крыт через резистор R3 и диод VI, а транзистор V3 закрыт. Конденсатор С2 заряжен почти до полного напряжения питания через резистор R6, диод VI и переход база — эмиттер транзистора V2. Транзистор V5 закрыт, и конденса­тор С4 заряжен через резисторы R9, R10 до напряжения стабилизации ста­билитрона V10 (tu рис. 4). Положительное напряжение с конденсатора С4 через диод V6 поступает на неинвертирующий вход 10 микросхемы D1, на инвертирующий вход 9 которой подается опорное напряжение UОп с дели-Теля Rll, R12.

При неработающем двигателе UOn меньше чем напряжение на конденса­торе С4, поэтому на выходе 5 микросхемы имеется положительное постоян­ное напряжение, которое через диод VII и резистор R17 поступает на вход Триггера Шмитта и устанавливает его во второе устойчивое состояние: тран­зистор V13 открыт, а транзистор V14 закрывается. При этом закрывается и Транзистор V16, а транзисторы V17, V15 открыты. Напряжение питания по­ступает к электромагнитному клапану и светодиоду.


Рис. 29. Схема электронного блока системы ЭПХХ с цепями подключения на автомобиле
Вывод XI электронного блока с помощью пружинного зажима «кроко­1дил» подключен к изоляции центрального высоковольтного провода распреде­лителя. Импульсы высокого напряжения, возникающие в момент искрообразования {U, рис. 30), проходят через емкость между высоковольтным прово-дом и зажимом «крокодил», ослабляются делителем напряжения на резисто­рах Rl, R2 и через конденсатор С1 поступают на вход заторможенного муль­тивибратора.

Отрицательная полуволна импульса зажигания закрывает транзистор V2, переводя мультивибратор во второе, временно устойчивое состояние. При этом заряженный конденсатор С2 через открывшийся транзистор V3 и рези­стор R4 подключается к диоду VI в запирающей полярности и тем самым удерживает мультивибратор во временно устойчивом состоянии после окон­чания действия импульса зажигания. Конденсатор С2 начинает перезаря­жаться через резистор R3 и транзистор V3.



Рис. 30. Временные диаграммы работы тахометрического реле при низких (а), средних (б) и больших (в) частотах вращения коленчатого вала
Через некоторое время, которое определяется постоянной времени цепи R3C2, напряжение на левой по схеме обкладке конденсатора С2 становится положительным, диод VI и транзистор V2 открываются, а транзистор V3 за­крывается. Мультивибратор возвращается в исходное устойчивое состояние (Тз на рис. 30).

Таким образом, во время работы двигателя на выходе мультивибратора (на коллекторе транзистора V3) появляется последовательность прямоуголь­ных положительных импульсов, длительность которых обратно пропорциональ­на частоте искрообразования, а промежутки между импульсами имеют фик­сированную длительность (примерно 0,5 мс), определяемую постоянной вре­мени цепи R3C2.

Положительные импульсы с выхода мультивибратора через диод V4 и конденсатор СЗ поступают на базу транзистора V5 и открывают его на вре­мя заряда конденсатора СЗ через резистор R6 (примерно на 0,05 мс). В ре­зультате конденсатор С4 в течение нескольких микросекунд разряжается че­рез открывшийся транзистор V5 (t3, t4, рис. 30).

После закрывания транзистора V5 конденсатор С4 снова заряжается че­рез резисторы R9, R10, причем напряжение, до которого он зарядится (t4, рис. 30), зависит от длительности положительного импульса на коллекторе транзистора V3 или, что то же самое, от частоты вращения вала двигателя. Чем частота выше, тем импульс короче и тем до меньшего напряжения заря­дится конденсатор С4.

При низких частотах вращения коленчатого вала двигателя конденсатор С4 успевает зарядиться до напряжения, превышающего опорное (рис. 30,а, б), в результате чего на выходе 5 микросхемы D1 появляется последователь­ность положительных импульсов. Постоянная составляющая напряжения этих импульсов выделяется на конденсаторе С6 и через резистор R17 поступает на вход триггера Шмитта, удерживая его во втором устойчивом состоянии. Транзисторы VI5, VI7 остаются открытыми, и напряжение питания продол­жает поступать к электромагнитному клапану и светодиоду.

При увеличении частоты вращения вала двигателя длительность положи­тельных импульсов на коллекторе транзистора уменьшается (рис. 30,6), сле­довательно, уменьшается и время заряда конденсатора С4, теперь он успевает зарядиться до меньшего напряжения. Длительность импульсов на выходе 5 ми- | кросхемы D1 уменьшается. Уменьшается и положительное напряжение, по­ступающее от выпрямителя V11C6 на вход триггера Шмитта. Однако триг­гер до определенного уровня входного напряжения остается во втором устой­чивом состоянии, и электромагнитный клапан и светодиод не обесточиваются.

При дальнейшем увеличении частоты наступает момент, когда напряжение на конденсаторе С4 не успевает достичь значения опорного напряжения (рис. 30,в), и положительное напряжение на входе триггера Шмитта исчезает. Триг­гер переключается в основное устойчивое состояние: транзистор V13 закры­вается, а транзистор V14 открывается через резистор R21. Транзистор V16 от­крывается коллекторным током транзистора V14, а транзисторы V17 и VI5 закрываются. Электромагнитный клапан и светодиод обесточиваются.

Точность работы ТХР обеспечивается тем, что заряд конденсатора С4 и питание делителя Rll, R12 опорного напряжения производятся от одного и того же и при том стабилизованного источника питания — стабилитрона V10, а также соответствующим выбором типа конденсатора С4.

Цепь, состоящая из транзистора V15, диода V12 и резисторов R13, R14 служит для получения заданной величины петли гистерезиса частотной харак­теристики ТХР. Когда электромагнитный клапан и светодиод обесточены, транзистор V15 и диод V12 закрыты, и эта цепь не оказывает влияния на работу ТХР. Когда же при уменьшении частоты транзистор VI5 открывается, резистор R13 через диод V12 и транзистор V15 подключается параллельно ре­зистору R12, вследствие чего опорное напряжение на входе 9 микросхемы D! уменьшается, и переключение схемы (снятие питания с электромагнитного кла­пана и светодиода) происходит теперь уже при большей частоте (см. рис. 27).

С помощью переменного резистора R9 выставляют частоту я включения электромагнитного клапана и светодиода при уменьшении частоты вращения вала двигателя, а с помощью переменного резистора R13 — величину петли ги­стерезиса An. Диоды V8, V9 ограничивают напряжение между входами микро­схемы D1 на допустимом уровне.

Устройство временной задержки УВЗ состоит из цепи временной задерж­ки С5, R18, R20, триггера Шмитта на транзисторах V20, V21 и электронного ключа на транзисторах V22, V23, причем триггер Шмитта и электронный ключ такие же, как и в ТХР. Устройство временной задержки работает следующим образом. Допустим, что контакты микровыключателя MB разомкнуты. Тог­да после включения питания триггер Шмитта устанавливается в основное ус­тойчивое состояние, когда транзистор V20 закрыт, а транзистор V21 открыт. Следовательно, открыт также транзистор V22, а транзистор V23 заперт. На- . пряжение к электромагнитному клапану и светодиоду от УВЗ не поступает.


1   2   3   4   5   6   7   8   9   10   11

Похожие:

А. Х. Синельников электроника в автомобиле icon 01. 04. 21 «Лазерная физика»
...
А. Х. Синельников электроника в автомобиле icon International Lighting Fair (Spring) 2013
Основные группы товаров: бытовая электроника, компьютеры и сетевое оборудование, коммуникационные системы, системы безопасности,...
А. Х. Синельников электроника в автомобиле icon Рабочая программа по дисциплине опд. Ф. 4 Электротехника и электроника
Омский институт водного транспорта (филиал) фбоу впо «Новосибирская государственная академия водного транспорта»
А. Х. Синельников электроника в автомобиле icon Рабочая программа по дисциплине с б. 7/Б б. 10 Общая электротехника и электроника
Омский институт водного транспорта (филиал) фбоу впо «Новосибирская государственная академия водного транспорта»
А. Х. Синельников электроника в автомобиле icon Книга раскроет для вас таинственную формулу любви. Если ваша любовь не взаимна, любовь-ли это?
В своей новой книге Валерий Синельников познакомит вас с эффективной стратегией словесного кодирования на успех, здоровье и благосостояние,...
А. Х. Синельников электроника в автомобиле icon Исследование люминесцентных свойств катодолюминофоров и их соответствия теоретической модели
Несмотря на то, что в настоящее время широкоиспользуемыми источниками излучения являются диодные и газоразрядные лампы, непрерывно...
Литература


При копировании материала укажите ссылку © 2015
контакты
literature-edu.ru
Поиск на сайте

Главная страница  Литература  Доклады  Рефераты  Курсовая работа  Лекции