Касаткин А. Г. Основные процессы и аппараты химической технологии




Скачать 1.02 Mb.
Название Касаткин А. Г. Основные процессы и аппараты химической технологии
страница 1/10
Дата публикации 19.10.2014
Размер 1.02 Mb.
Тип Документы
literature-edu.ru > Химия > Документы
  1   2   3   4   5   6   7   8   9   10

Рекомендуемая литература





  1. Касаткин А.Г. Основные процессы и аппараты химической технологии. – М.: 1973, 754 с.

  2. Скобло А.И., Трегубова И.А., Молоканов Ю.К. Процессы и аппараты нефтеперерабатывающей и нефтехимической промышленности. – М.: Химия, 1982, 584 с.

  3. Молоканов Ю.К. Процессы и аппараты нефтегазопереработки. – М., Химия, 1980, 408 с.

  4. Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии. Учебное пособие для вузов. – Л.: Химия, 1987, 576с


1 ОБЩИЕ ПРИЗНАКИ МАССООБМЕННЫХ ПРОЦЕССОВ
Массообменные или диффузионные процессы связаны с переходом компонентов из одной фазы в другую с целью их разделения.

Все массообменные процессы обладают рядом общих признаков.

  1. Они применяются для разделения смесей.

  2. В любом процессе участвуют, по крайней мере, две фазы: жидкая и паровая (перегонка и ректификация), жидкая и газовая (абсорбция), твердая и парогазовая (адсорбция), твердая и жидкая (адсорбция, экстракция), две жидких (экстракция).

  3. Переход вещества из одной фазы в другую осуществляется за счет диффузии.

  4. Движущей силой массообменных процессов является разность концентраций или градиент концентраций. Процесс протекает в направлении той фазы, в которой концентрация компонента меньше.

  5. Перенос вещества из одной фазы в другую происходит через границу раздела фаз, на которой предполагается состояние равновесия фаз.

  6. Диффузионные процессы обратимы, т.е. направление процесса определяется законами фазового равновесия.

7.Переход вещества из одной фазы в другую заканчивается при достижении динамического равновесия.

Состояние равновесия следует понимать так, что обмен между фазами не прекращается, однако скорости перехода компонентов из одной фазы в другую выравниваются.
Классификация массообменных процессов


Фаза источник

Фаза приемник



Г

Ж

Т

Г


Мембранные

процессы

перегонка ректификация

Десорбция I

Десорбция II

Ж


абсорбция

экстракция

Десорбция II

Т





адсорбция

Фазовый переход 2 рода

Ректификация- процесс многократного противоточного контактирования встречных неравновесных потоков пара и жидкости с целью разделения жидких гомогенных смесей на фракции.

Абсорбция – процесс избирательного поглощения компонентов газовой смеси жидким поглотителем – абсорбентом.

Экстракция- процесс избирательного извлечения компонентов из жидкой смеси (или из твердого вещества) жидким экстрагентом.

Адсорбция – процесс избирательного поглощения компонентов газовой или жидкой смеси твердым поглотителем – адсорбентом.

Сушка – процесс удаления жидкости (влаги) из твердых материалов

Мембранные процессы – избирательное извлечение компонентов смеси или их концентрирование с помощью полупроницаемой перегородки- мембраны.

.

  1. Основное уравнение массопередачи

Известны два вида переноса вещества – молекулярная и конвективная диффузия Молекулярная диффузия обусловлена переносом молекул вещества из области с большей концентрацией в область с меньшей концентрацией и протекает в неподвижной среде или ламинарных пограничных слоях.

Скорость переноса вещества из одной фазы в другую dM пропорциональна движущей силе процесса D, характеризующей степень отклонения систем от состояния равновесия, и поверхности контакта фаз dF . Следовательно:

( 4 )

где К коэффициент масссопередачи.( аналогично с теплопередачей)

Коэффициент массопередачи характеризует массу вещества, переданную из одной фазы в другую в единицу времени через единицу поверхности контакта фаз при движущей силе процесса, равной единице.

Коэффициент массопередачи отражает уровень интенсификации процесса: чем больше величина К, тем меньше их размеров требуется аппарат для передачи заданного количества вещества. Одновременно следует воздействовать и на величину поверхности контакта фаз, стремясь ее максимальному развитию и обновлению в единице объема аппарата. Наибольшее влияние на интенсивность массоперенос оказывают гидродинамические и конструктивные факторы.
3. ПРАВИЛО ФАЗ ГИББСА ПРИМЕНЕНИЕ К ПРОЦЕССАМ МАССООБМЕНА

При равновесии во всех частях системы должны быть постоянными давление и температура, в противном случае будут протекать процессы массо- и теплообмена.

Для равновесных систем выполняется правило фаз Гиббса, которое устанавливает зависимость числа степеней свободы (N)

N=К+2-Ф (5)

где N -число степеней свободы системы; К - число компонентов; Ф - число фаз.

Число степеней свободы системы - это число независимых переменных (температура, давление, концентрация компонентов), которые можно произвольно в определенных пределах изменять, не изменяя равновесие системы.

В равновесной системе (N = 0) число сосуществующих фаз не может быть более Ф=К+2.

Для двухфазных систем, число степеней свободы системы равно числу компонентов (N = К). В основном в курсе далее будут рассмотрены двухфазные системы.

Бинарная смесь К=2, N=2, можно изменять температуру и концентрации, при постоянном внешнем давлении. В аппарате должен быть градиент t и x при постоянном π.

Для много компонентных систем (нефть) К→∞ и N→∞, Поэтому для многокомпонентных систем (характерных для нефтепереработки) число степеней свободы может быть весьма велико.

Массовый, мольный и объемный состав

Массовая доля компонента определяется отношением массы данного компонента к массе всей смеси

( 1 )

Учитывая, что суммарная масса смеси равна сумме масс отдельных компонентов смеси т.е.

( 2 )

можно написать

( 3 )

т.е. сумма массовых долей всех компонентов смеси равна единице

Мольная доля какого - либо компонента смеси определяется как отношение числа молей данного компонента к общему числу молей смеси

( 4 )

где Ni число молей, определяется по следующему соотношению:

( 5 )

( 6 )

Объемная доля компонента в смеси равна отношению объема данного компонента к объему всей смеси

( 7 )

( 8 )
Объемные доли применяют в тех случаях, когда при смешении не происходит изменения объема компонентов.

Для взаимного пересчета массовых и мольных долей используют следующие соотношения:

( 9 )

( 10 )

При пересчете объемных концентраций в массовые или мольные (например, при пересчете кривых разгонки, построенных в объемных долях) пользуются соответствующими формулами расчета:

(11)

где ρсм - средняя плотность смеси.

Л 2
4 СУЩНОСТЬ ПРОЦЕССА РЕКТИФИКАЦИИ

Известны различные подходы и способы по обоснованию технологии перегонки и ректификации, а также принципов выбора конструкции аппарата для разделения бинарной смеси.

В качестве примера рассмотрим разделение бинарной смеси бензол-толуол. Известны состав и свойства компонентов исходной смеси. Проведем серию экспериментов. Поместим в перегонную колбу (рисунок 4.1) жидкость с известным составом (бензола 40 % и толуола 60%), при этом необходимо из этой смеси получить конденсат с составом бензола 99,9 % и толуола 0,01%.

После постепенного испарения и конденсации (рисунок 4.1) определим состав конденсата, получилось бензола 85% и толуола 15%. Т.е. достаточно хорошая степень разделения компонентов при постепенном испарении не достигается. Данная конструкция неприемлема на практике.

Принцип однократного испарения (конденсации) реализуется в пустотелом аппарате, называемом газосепаратор или пароотделитель (рисунок 4.1), полученный состав конденсата является неприемлемым (бензола 65% и толуола 35%), однако конструкция аппарата является более удачной по сравнению с предыдущим аппаратом.

Повторим несколько раз процессы однократного испарения и конденсации, поставив серию таких аппаратов (рисунок 4.1). При этом достигается желаемые составы паровой и жидких фаз, но масса конденсата незначительна по сравнению с массой исходной смеси. Также при этой технологии более громоздкое и дорогое аппаратурное оформление.

Все предыдущие недостатки реализуются в одном аппарате, который включает процессы многократного испарения и конденсации на каждой ступени контакта, называемыми тарелками. На любой тарелке колонны происходит контакт между парами, поднимающимися на эту тарелку и жидкостью, стекающей на эту тарелку (рисунок 4.2)

Очевидно, изменение состава фаз будет происходит в том случае, если будет градиент концентраций и температур. Поскольку давление в колонне постоянно, то это условие будет выполняться, если температура потока жидкости будет меньше, чем температура паров. Наименьшая температура должна быть в верхней части колонны, а наибольшая в нижней части колонны. При контакте этих потоков происходит изменение состава фаз до равновесных. В нижней части колонны необходим подвод тепла, а верхней необходимо охлаждение.

Контактирование встречных потоков фаз осуществляется до тех пор, пока не будут достигнуты желаемые составы продуктов колонны. Этот процесс называется ректификацией, и колонна называется ректификационной. Верхняя часть будет концентрационной или укрепляющей, а нижняя часть отгонной или исчерпывающей, место ввода сырья в колонну называется питательной секцией.



Рис.4.1. Основные виды процессов испарения и конденсации:

I—процессы испарения; а—постепенное; б — однократное (ОИ); в—многократное;

II— процессы конденсации; а — постепенная; д - однократная (OK); в многократная; 1, 1' — испаритель; 2, 2' ~ конденсатор; 3 — приемник; 4, 4' — испаритель; 5, 5' — разделительный сосуд (сепаратор).
В зависимости от назначения колонны могут быть полными, которые имеют концентрационную и отгонные секции, или неполными: укрепляющая колонна не имеет отгонной секции, а отгонная колонна - концентрационной секции. Кроме того, различают простые и сложные колонны. В простой колонне сырье разделяется на два продукта, а в сложной колонне число отбираемых продуктов более двух.

Таким образом, обосновали конструкцию аппарата для разделения бинарной смеси и необходимо доказать расчетными методами, что этот аппарат является приемлемым.
нет

Рис.4.2. Схема ректификационной колонны.
5 ИЗОБАРНЫЕ ТЕМПЕРАТУРНЫЕ КРИВЫЕ
Построим изобары жидкости и пара ( при постоянном давлении). По оси абсцисс отложены концентрации жидкой и паровой фаз, по оси ординат - температура (рисунок 7.1, нижние кривые) . Получаются две кривые, которые имеют две общие точки: точку А при , отвечающую температуре кипения бензола и точку В при , соответствующая температуре кипения толуола. Кривая АА1А2В, определяющая зависимость между температурой системы и составом жидкой фазы, называется линией кипения. Кривая АВ1В2В, определяющая зависимость между температурой системы и составом паровой фазы, называется линией конденсации или насыщенных паров.

Пары жидкости могут быть насыщенными и перегретыми. Насыщенным называется пар, находящийся в равновесии с жидкостью. Чем выше температура, тем выше давление, при котором находится данная равновесная система. Для насыщенных паров существует однозначная зависимость между давлением паров и температурой. Ненасыщенными (перегретыми) парами называются пары, которые при данных температуре и давлении образуют однофазную систему. Жидкая фаза отсутствует.

Равновесные паровая и жидкая фазы имеют одинаковые температуру и поэтому на изобарных температурных кривых равновесные составы фаз будут определяться точками пересечения горизонталей, с линиями кипения и конденсации, эти горизонтальные отрезки называются конодами (например А1В1).

Область диаграммы, лежащая под кривой АА1А2В, отвечает некипящей жидкости (точка F).Область диаграммы выше кривой конденсации АВ1В2В, отвечает перегретым парам (точка Е).

Любая точка, лежащая между кривыми конденсации и кипения, например точка C, характеризует двухфазную систему (пар-жидкость).
5.2 Закон-Рауля-Дальтона

Изобарные кривые можно построить экспериментально, а также расчетным методом.

Точка А1 на кривой кипения жидкости может быть найдена по закону Рауля. Парциальное давление компонента pi идеального раствора равно произведению давления насыщенных паров Pi при данной температуре на мольную концентрацию компонента в жидкой фазе x’:

( 20 )

Давление насыщенных паров каждого компонента вычисляют по эмпирическим формулам. Например, по формуле Антуана

( 21 )

где А, В, С - константы, зависящие от свойств вещества и определяемые экспериментально;

t - температура.

Известно, что жидкость начинает кипеть при такой температуре, при которой давление ее насыщенных паров становится равным внешнему давлению.

Условие кипящей жидкости:

( 22 )

Откуда

- получили уравнение нижней изобары. ( 23 )

По закону Дальтона парциальное давление компонента газовой смеси равно произведению давления в системе на мольную долю компонента в газовой смеси

( 24 )

При равновесии давление во всех точках системы одинаково. Объединенный закон Рауля-Дальтона

pi = PБ x’i = P y’i. ( 25 )

, -уравнение верхней изобары ( 26 ).

Следовательно, при данных температуры и давления системы равновесные составы паровой и жидкой фаз однозначно определяются давлениями насыщенных паров компонентов смеси.
6 УРАВНЕНИЕ И КРИВАЯ РАВНОВЕСИЯ ФАЗ БИНАРНОЙ СМЕСИ

Составы x’ и y’ равновесных жидкой и паровой фаз для бинарной смеси могут быть представлены графически при данном давлении системы (рисунок 6.1). Закон Рауля-Дальтона может быть представлен в следующем виде:

Для низкокипящего компонента:
, ( 29 )

Для высококипящего компонента:

( 30 )
Разделим уравнение на уравнение, обозначим P1 / P2 = a - относительная упругость

( 31 )

Уравнение равновесия фаз представляет собой гиперболу, проходящую через начало координат (рис. 4.2) диаграммы x’ - y’ (точка 0 и точку А с координатами x’ = y’ = 1).

Коэффициент относительной летучести возрастает с понижением давления.



Рисунок 6.1 Кривая равновесия

7 Энтальпийная диаграмма

Для анализа и расчета процессов перегонки и ректификации используют энтальпийные диаграммы, дающие взаимосвязь составов жидкой и паровой фаз с их энтальпиями.

Энтальпия (или теплосодержание) жидкости равна количеству тепла, необходимого для нагрева жидкости от 0оС до заданной температуры. Энтальпия пара равна количеству тепла, необходимого для нагрева вещества от 0оС до заданной температуры учетом тепла испарения и перегрева паров.

Величина энтальпии определяется эмпирически по таблицам или по приближенным формулам:

( 27 )
( 28 )

Энтальпийные диаграммы используют при расчетах перегонки и ректификации, когда необходимо одновременно учитывать материальные и тепловые потоки.

На энтальпийной диаграмме приведены кривые энтальпии кипящей жидкости и энтальпии насыщенных паров в зависимости от концентрации.

Любая точка А на энтальпийной диаграмме, лежащая ниже кривой энтальпии жидкой фазы характеризует систему, состоящую только из жидкой фазы. Любая точка А4, лежащая выше кривой энтальпии паровой фазы, состоит из перегретых паров. Точки, расположенные между кривыми, например А2 характеризует двухфазные системы.

Вертикальные отрезки между кривыми энтальпий паровой и жидкой фаз отвечают скрытой теплоте испарения (конденсации) смеси определенного состава.

Физический смысл величины скрытой теплоты испарения

Т.к. скрытая теплота испарения у разных веществ не совпадают, то энтальпийные кривые жидкости и пара не параллельны.

На энтальпийной диаграмме коноды изображаются наклонными прямыми. Поскольку на графиках изобар коноды располагаются горизонтально, т.е. положение их легко определить, а на энтальпийной диаграмме - наклонно под разными углами к оси абсцисс, то для удобства построений энтальпийную диаграмму обычно совмещают с графиком изобарных температурных кривых (рисунок 7.1) .





Рис.7.1. Представление процесса ОИ (ОК) бинарной смеси на энтальпийной диаграмме и изобарных температурных кривых

Л 3
  1   2   3   4   5   6   7   8   9   10

Добавить документ в свой блог или на сайт

Похожие:

Касаткин А. Г. Основные процессы и аппараты химической технологии icon План работы Муниципального бюджетного учреждения культуры
Цель: Модернизировать и реорганизовать основные библиотечные процессы по обслуживанию всех групп населения, поднять работу библиотек...
Касаткин А. Г. Основные процессы и аппараты химической технологии icon Урока Деятельность учащихся Тема «Имя числительное как часть речи»
Икт, здоровьесберегающие технологии, технология критического мышления через чтение и письмо, тестовые технологии, информационно-коммуникативные...
Касаткин А. Г. Основные процессы и аппараты химической технологии icon Международная выставка-конференция лицензионных технологий и товаров. Основные группы товаров
Основные группы товаров: лицензионные программы и договора, лицензионные товары, технологии и услуги, реклама лицензионных товаров,...
Касаткин А. Г. Основные процессы и аппараты химической технологии icon Урок русского языка в 9 классе
Применяемые методики, технологии: проблемное обучение, интегрированный подход к процессу обучения, элементы технологии воспитательной...
Касаткин А. Г. Основные процессы и аппараты химической технологии icon Литература Петровской эпохи. «Гистория о российском матросе Василии...
Характеристика Петровского периода развития русской литературы: основные процессы, темы, жанры этого периода. Идея внесословной ценности...
Касаткин А. Г. Основные процессы и аппараты химической технологии icon Рабочая программа по технологии представляет собой целостный документ,...
Нужд и потребностей людей. Она включает процессы, связанные с преобразованием вещества, энергии, информации, при этом оказывает влияние...
Касаткин А. Г. Основные процессы и аппараты химической технологии icon Программа по курсу: архитектура ядра ос windows
История семейства Windows nt. Цели и принципы семейства Windows nt. Основные концепции: Native и Win32 api, режимы ядра и пользователя,...
Касаткин А. Г. Основные процессы и аппараты химической технологии icon План работы мо классных руководителей на 2013/2014 учебный год
«Современные педагогические технологии воспитания: основные идеи, классификация, характеристика и краткий анализ конкретных технологий...
Касаткин А. Г. Основные процессы и аппараты химической технологии icon Рабочая программа по дисциплине опд. Ф. 8 Электрические и электронные аппараты
Омский институт водного транспорта (филиал) фбоу впо «Новосибирская государственная академия водного транспорта»
Касаткин А. Г. Основные процессы и аппараты химической технологии icon Р. В. Овчарова психологическая фасилитация работы школьного учителя
Учебное пособие предназначено для студентов специальности 030301 психология и ориентировано на практические аспекты их будущей профессиональной...
Литература


При копировании материала укажите ссылку © 2015
контакты
literature-edu.ru
Поиск на сайте

Главная страница  Литература  Доклады  Рефераты  Курсовая работа  Лекции