Когнитивная и прикладная психология




Скачать 7.75 Mb.
Название Когнитивная и прикладная психология
страница 5/51
Дата публикации 22.06.2014
Размер 7.75 Mb.
Тип Книга
literature-edu.ru > Психология > Книга
1   2   3   4   5   6   7   8   9   ...   51
ГЛАВА 4. Механизмы памяти

В современных исследованиях памяти в качестве центральной проблемы выступает проблема механизмов памяти. Она решается на психологическом, нейрофизиологическом и биохимическом уровнях.

Говоря о психологических теориях памяти, мы указывали, что в современной науке все большее признание приобретает теория, которая в качестве основного понятия рассматривает действие субъекта как фактор, детерминирующий формирование всех его психических процессов, в том числе и процессов памяти. Согласно этой концепции, протекание процессов запоминания, сохранения и воспроизведения материала определяется тем, какое место он занимает в деятельности субъекта. Экспериментально установлено и доказано, что наиболее продуктивно связи образуются и актуализируются в том случае, когда соответствующий материал выступает в качестве цели действия. Характеристики этих связей, например, их прочность и лабильность (подвижность, оперативность), определяются тем, какова степень участия соответствующего материала в дальнейшей деятельности субъекта, какова их значимость для достижения предстоящих целей.

Физиологические теории механизмов памяти возникли в рамках и на основе учения И. Павлова о закономерностях высшей нервной деятельности. Учение об образовании условных временных связей — это теория механизмов формирования индивидуального опыта субъекта, т. е. собственно теория запоминания на физиологическом уровне. Условный рефлекс как акт образования связи между новым и уже ранее закрепленным содержанием и составляет физиологическую основу акта запоминания.

Авторы биохимических теорий памяти исходят из того, что в основе механизмов памяти лежат химические изменения, происходящие в нервных клетках под действием внешних раздражителей. Имеются в

65

виду различные перегруппировки белковых молекул нейронов и прежде всего молекул так называемых нуклеиновых кислот. Дезоксирибонуклеиновая кислота (ДНК) считается носителем генетической, наследственной памяти; рибонуклеиновая кислота (РНК) — основой онтогенетической, индивидуальной памяти. В опытах шведского биохимика Хидена установлено, что раздражение нервной клетки увеличивает в ней содержание РНК. Наоборот, длительное отсутствие раздражения нервной клетки ведет к снижению содержания РНК. Опыты Хидена заключались в следующем. Он подвергал животное длительному вращению, раздражая этим вестибулярные нервные узлы. Когда после этого был произведен биохимический анализ нервных клеток этих узлов, оказалось, что содержание РНК в клетках значительно повышено. Значит, каждое раздражение нервной клетки вызывает увеличение содержания РНК и, как полагает Хиден, оставляет длительные биохимические следы, сообщающие ей способность резонировать на повторное действие «знакомых» раздражителей. РНК очень изменчива; количество возможных ее специфических изменений, по Хидену, измеряется числом 1015—1020; меняется контур ее компонентов, расположение в пространстве, скорость распада и т. д. Это значит, РНК может удержать огромное количество кодов информации. Хиден считает, что способность РНК резонировать на специфические структуры «знакомых раздражителей, иначе говоря, узнавать знакомые раздражители, не отвечая на другие воздействия, составляет биохимический механизм памяти.

В последнее время пристальное внимание исследователей памяти привлекли к себе процессы, происходящие на начальной стадии запоминания, еще до закрепления следов внешних воздействий, а также в момент их образования. Для того чтобы тот или иной материал в памяти закрепился, он должен быть соответствующим образом переработан субъектом. Такая переработка требует определенного времени, которое называется временем консолидации следов (консолидация — упрочение, укрепление). Как удерживается материал, до того как произойдет акт консолидации? Полагают, что возбуждение, приходящее в мозг

66

от органов чувств, в течение некоторого времени циркулирует по замкнутым цепям нейронов, называемым кругами реверберации (реверберация — лат. циркуляция). Субъективно этот процесс переживается как «отзвук» только что произошедшего события: на какое-то мгновение мы как бы продолжаем видеть, слышать и т. д. то, что непосредственно не воспринимаем («стоит перед глазами», «звучит в ушах»...). Эти процессы стали рассматривать в качестве особого вида запоминания, сохранения и воспроизведения информации, который получил название кратковременной памяти.

Кратковременность этого вида памяти можно проиллюстрировать множеством примеров. Тот, кто начинает изучать иностранный язык, при попытке прочитать предложение нередко вынужден дважды искать в словаре одно и то же слово, если оно попадается в предложении второй раз. А когда нас знакомят с кем-нибудь в гостях, наши рецепторы могут четко передать в мозг произнесенное имя, но если мы невнимательны или думаем о чем-то другом, оно не западает в память. В первые секунды, сделав сознательное усилие, мы еще можем извлечь его из нашей быстро угасающей кратковременной памяти; но если мы не сосредоточили внимание в этот краткий промежуток времени, информация, поступившая в сенсорную кору, исчезает, и мы уже не в силах восстановить ее.

Возникает вопрос, как происходит переход от кратковременной записи следов к длительной, от кратковременной к долговременной памяти. Некоторые исследователи считают, что в основе этих видов памяти лежит единый механизм (А. Мелтон), другие полагают, что здесь имеются два механизма с различными характеристиками (Д. Бродбент, Д. Хебб и др.).

Можно выделить следующие принципиальные утверждения сторонников двух механизмов кратковременной (КП) и долговременной (ДП) памяти:

1. КП включает «активные» следы, в то время как ДП — «структурные».

2. КП базируется на автономном распаде следов, а ДП характеризуют «необратимые», не подлежащие распаду следы.

67

3. КП теряет свои элементы из-за перегрузки, она не характеризуется «ассоциативностью» следов. Неполное восстановление следов в ДП объясняется неполнотой сигнала восстановления или интерференцией.

Монистический подход заключается в том, что следам единичных событий приписываются такие же структурные качества, такая же «необратимость» и чувствительность к интерференции, как и следам ДП.

П. Линдсей и Д. Норман (1974), выдвигая гипотезу о зависимости забывания в кратковременной памяти и от разрушения следа со временем (спонтанное стирание), и от процессов интерференции, пишут: «Когда для объяснения какого-либо явления предлагаются две теории, истина, возможно, лежит где-то посредине».

Р. М. Грановская (1975) рассматривает кратковременную память как состоящую из двух основных последовательных фаз: динамической и статической. Динамическое хранение связано с циркуляцией импульсов в нейронных цепях в течение интервала сохранения в этой фазе. Оно является естественным продолжением процесса внешнего воздействия во времени. Статическое хранение связано с изменением уровня возбудимости нейронов кратковременной памяти и осуществляет изоморфное пространственное отображение динамических следов в течение фазы кратковременной памяти. Статическая фаза в отличие от долговременного хранения не связывается автором с молекулярными изменениями. Информация, накопленная в статической части кратковременной памяти, может быть прозвольно и необратимо стерта, в отличие от следов в долговременной памяти, которые хранятся всю жизнь.

Проблема своеобразия следов КП и ДП базируется и на клинических наблюдениях. Например, при некоторых отравлениях мозга (алкоголь, угар, отравление мышьяком) старые следы сохраняются, возможность же фиксировать новые следы и сохранять их либо нарушается, либо совсем исчезает (так называемый Корсаковский синдром). В результате больной представляет очень своеобразную картину. Он хорошо сохраняет весь прежний опыт, прекрасно помнит свои

68

детские и юношеские годы, хорошо сохраняет знания и навыки своей прежней профессии, может рассказать о содержании и месте своей прежней работы. Однако он оказывается совершенно не в состоянии запечатлеть и воспроизвести вновь наступающие ситуации. Врач входит к нему в палату, здоровается с ним, говорит с ним несколько минут и после этого выходит из палаты. Когда он тут же снова входит в палату, больной опять здоровается с ним, как будто в первый раз его видит. Он не узнает никого из людей, с которыми ему приходится сталкиваться в больнице, ему чуждо чувство знакомости, у него грубо нарушено узнавание.

Аналогичное явление наблюдается при мозговых травмах, сотрясениях, вызывающих спазмы сосудов. При этом старые следы полностью сохраняются, но имеет место ретроградная амнезия (стирание следов некоторых событий до травмы) и антероградная амнезия (стирание следов событий посттравматического периода). Подобное явление описал Ф. Д. Горбов (1962). Травма у мотоциклиста, которого на 78 км пути сбил грузовик, вызвала ретроградную амнезию всех впечатлений на пути от 64 до 78 км (10—15 мин) и всех впечатлений после травмы. Проверка, проведенная после длительного срока, показала, что впечатления, полученные за 10—15 мин до травмы, так и не восстановились в его памяти.

Эти явления Ф. Д. Горбов воспроизвел в эксперименте. Испытуемый должен производить простые арифметические операции (сложения или вычитания) с однозначными числами, которые предъявляются на движущейся ленте через окошко (например, сначала появляется 2, затем +4, потом –1 и т. д.). Значит, испытуемый имеет дело со следами (более или менее отдаленными) чисел и только что воспринятым числом. Слабый удар испытуемого электрическим током во время опыта приводит к потере прежнего следа, и испытуемый складывает увиденное в окошке число не с только что получившимся, а с предыдущим результатом, который, видимо, оставил более прочный след. Значит, только что образовавшиеся следы еще непрочны, неустойчивы, нужно некоторое время, чтобы они успели упрочиться, консолидироваться.

69

Отсюда вытекает гипотеза консолидации следов: следы не сразу закрепляются, для этого нужно некоторое время, — и задача измерения времени, необходимого для консолидации.

Для проверки гипотезы консолидации, измерения времени последней и определения условий ее осуществления был проведен целый ряд исследований.

Вот пример характерного эксперимента. Крысу помещают на маленькую площадку на высоте нескольких сантиметров от пола. Крыса тотчас же соскакивает на пол. Однажды спрыгнув, крыса испытывает боль от удара электрическим током. Если после этого крысу вновь поместить на площадку даже по истечении 24 ч после опыта, она будет терпеливо находиться на ней до тех пор, пока экспериментатору не надоест ждать и он сам не снимет ее оттуда. Таким образом, у крысы в памяти отложились впечатления об опыте, вызвавшем болевые ощущения.

У другой крысы развитие реакции кратковременного запоминания прекращается путем пропускания через ее мозг слабого разряда электрического тока. В результате на следующий день она ведет себя на площадке так, словно вчера ничего с ней не произошло.

Исследования с применением фармакологических веществ, вызывающих торможение, и электрошоков показали, что если эти вещества действуют через 1 мин после выработки навыка, следы исчезают, а если через 30 мин после выработки навыка, следы сохраняются.

Таким образом, общее время консолидации следов колеблется в пределах от 10—15 с до 20—30 мин.

Оказалось, что существуют отчетливо выраженные индивидуальные различия в действии фармакологических препаратов или электрошоков на выработку навыка, или на сохранение следов, у отдельных животных. В опытах по выработке навыков у крыс был обнаружен большой разброс по способности делать это быстро или медленно. Одни крысы вырабатывают навыки очень быстро — это «быстрые», или способные к выработке навыка крысы; другие — медленно — это «медленные» крысы. Способность быстро или медленно вырабатывать навыки передается по наследству,

70

и существуют, таким образом, линии крыс, быстро или медленно вырабатывающих навыки. Далее было установлено, что эти линии крыс различаются биохимическими характеристиками мозга.

Итак, в настоящее время выделяют две фазы памяти: лабильную, которой соответствует удержание следа в форме реверберации нервных импульсов, и стабильную, которая предполагает сохранение следа за счет структурных изменений, вызванных к жизни в процессе консолидации. При этом процесс консолидации следа является непременным условием последующих структурных изменений.

71

ГЛАВА 5. Память и информация

Одним из направлений в современной психологической науке, в русле которого выполнено большое количество работ по изучению памяти, является так называемый кибернетический подход к памяти.

Его возникновение и развитие обусловлено в значительной степени все более растущим взаимодействием между психологией и кибернетикой, актуальностью проблемы человек-машина, необходимостью распределения функций между ними. В чем суть этого подхода?

Кибернетический, или информационный, подход к памяти позволяет определить ее как запоминание, хранение и воспроизведение информации. В этом определении отражены общие признаки человеческой памяти, запоминающего устройства машины и таких моделей памяти, как, например, письмо, живопись, книгопечатание, фотография.

Человеческая память как психический процесс, как свойство человеческого мозга отличается тем, что в ней запоминается, хранится и воспроизводится прошлый опыт общественного человека. То, что человеческая память развивалась как звено передачи информации и обмена информацией в человеческом обществе, обусловило специфически человеческие способы кодирования, переработки, хранения и поиска информации, отличающие количественно и качественно человеческую память от памяти искусственной. Но вместе с тем нельзя отвлечься от основного свойства памяти — хранить информацию.

Информационный подход к изучению памяти позволил найти количественную меру запоминаемого материала — количество информации. Если раньше мы не имели возможности количественно сравнить разнородный запоминаемый материал, и вопрос о том, например, где больше запоминаемого материала — в десяти буквах или в десяти цифрах, не мог быть разрешен, то теперь оказалось возможным более или

72

менее определенно оценить количество информации, содержащейся в запоминаемом материале, который закодирован самыми разнообразными символами. Для этого нужно знать длину алфавита и вероятность появления этих символов. Так, 10 цифр несут 33 дв. ед. информации, а 10 разных букв, если они отобраны в случайном порядке, — 50 дв. ед.; если же 10 букв составляют часть предложения, начало которого нам известно, то они содержат не более 10 дв. ед.

Одна из традиционных проблем психологии памяти — проблема объема кратковременной памяти — с использованием информационного подхода была сформулирована следующим образом: зависит ли объем кратковременной памяти от количества информации, содержащейся в запоминаемом материале. Одним из первых эту проблему исследовал Дж. Миллер.

В его эксперименте использовались три вида стимульного материала: двоичные числа, десятичные числа и слова, отобранные из 1000 односложных слов. Длина алфавита для этих символов, соответственно, составляет 2, 10 и 1000 символов, что соответствует 1, 3.3 и 10 двоичных единиц на символ.

Результаты исследования показали, что при различном материале объем кратковременной памяти почти не изменяется. Для двоичных чисел объем кратковременной памяти составил 9, для десятичных чисел 8, а для односложных слов 5 символов. В информационных мерах объем кратковременной памяти составил, соответственно, 9,26 и 50 дв. ед. Таким образом, с увеличением информации на символ на входе в 10 раз объем кратковременной памяти в символах уменьшается в 1,8 раза, а объем памяти в двоичных единицах увеличивается в 5,5 раза.

Таким образом, Дж. Миллер экспериментально показал, что объем памяти не зависит от количества информации в отдельном символе, а определяется длиной ряда предъявленных символов, предел которого составляет 7±2. Иначе говоря, объем кратковременной памяти определяется постоянным числом кусков информации, которые могут быть и богаты, и бедны информацией.

73

С этим фактом — обусловленностью объема памяти количеством символов независимо от содержащейся в них информации — Миллер связывает проблему кодирования информации.

Важно кодировать запоминаемый материал символами, содержащими много информации. «Это выглядит так, как если бы мы должны были носить все наши деньги в кошельке, вмещающем только семь монет. При этом для кошелька безразлично, что это за монеты — пенни или серебряные доллары».

Уточнение результатов Миллера было получено в опытах П. Б. Невельского (1965). Автор показал, что с изменением информации на символ в 40 раз (с 0,5 до 20 дв. ед.) объем кратковременной памяти испытуемых изменяется всего в 4 раза (с 12 до 3 символов).

Итак, основная закономерность объема кратковременной памяти — его инвариантность при измерении числом символов — проявляется даже при очень широком диапазоне изменения количества информации. Но при этом оценка объема кратковременной памяти «магическим числом семь» (по Дж. Миллеру) является справедливой только для случаев, когда информация на символ на входе находится в пределах от 1 до 10 дв. ед.

В другом исследовании Дж. Миллера, выполненном совместно со Смитом, было показано, что положение о независимости объема кратковременной памяти от количества информации относится не только к непосредственному запоминанию, но и к процессу заучивания наизусть. При заучивании двух списков, разных по количеству символов, но содержащих одинаковое количество информации (10 буквенных символов, выбранных из алфавита в 32 символа, и 50 символов — из двоического алфавита), испытуемые затратили в среднем на список из 10 символов 2.5 повторений, а на список из 50 символов — 122 повторения. С другой стороны, авторы получили незначительные различия в количестве повторений в опытах, где заучивались равные по длине списки, но содержащие разное количество информации (составленные в одном случае из 32, а в другом — из 8 альтернатив).

Если объем памяти не зависит от количества информации на символ, то задача человека, заучивающего

74

материал, заключается в том, чтобы выбрать для запоминания небольшое количество символов, содержащих много информации, которые бы обеспечивали восстановление при пересказе всех деталей исходного материала. Таким образом, заучивание связано с преобразованием материала в определенные группы и введением новых символов. Такое группирование и введение новой символики — иными словами, перекодирование материала — является мощным орудием для увеличения количества перерабатываемой человеком информации.

Процессы перекодирования входной информации — эффективное средство преодоления информационной нагрузки. Все живые системы вырабатывают свои средства, препятствующие перегрузке информацией. Чем сложнее система, тем больше у нее таких средств. Дж. Миллер перечисляет следующие механизмы, препятствующие перегрузке: 1) отказ от приема информации; 2) ошибка при приеме информации; 3) задержка, когда ответ на поступающее сообщение откладывается со времени «пик» на время уменьшения притока информации; 4) фильтрация, когда определенные категории информации систематически не принимаются; 5) приблизительность, когда на две различные категории информации перегруженная система дает ответ как на одну; 6) увеличение количества каналов по приему информации, распределяющее ее по подсистемам и благодаря этому снимающее перегрузку с системы в целом; 7) децентрализация (частный случай предыдущего); 8) избегание, когда система избегает ситуаций, влекущих за собой перегрузку информацией. Этот перечень, за исключением пунктов 6 и 7, характеризует способы избегания информационной перегрузки. Не менее важны и способы преодоления перегрузки, посредством которых принимается весь поток информации за счет изменения или укрупнения алфавита, т. е. за счет перекодирования и введения новых символов.

При исследовании проблемы перекодирования в процессе запоминания возникает вопрос об определении размеров используемых человеком «кусков» информации. С целью найти данные, определяющие длину «кусков» информации при запоминании словесного

75

материала, Дж. Миллером и О. Селфриджем (1950) было проведено исследование, в котором выяснялось влияние на количество запоминаемого словесного материала различных порядков приближения к статистической структуре английского языка. Авторы пришли к утверждению, что для связного текста естественная длина обобщенных символов составляет в среднем пять слов, т. е. человек оперирует отрезками информации, средняя длина которых составляет пять слов.

Гипотеза о решающей роли в процессе запоминания перекодирования материала перекликается с рядом известных положений об опосредствованном характере памяти человека, разрабатывавшихся в советской психологии Л. С. Выготским, А. Н. Леонтьевым и др.

Проблема перекодирования была поставлена в контексте изучения оперативной памяти как исследование способов преобразования материала при его оперативном запоминании. Результатом этих преобразований выступают оперативные единицы памяти (ОЕП), которые в зависимости от качества лежащих в их основе способов отражают объект и условия действия с разной полнотой и глубиной, т. е. являются в разной степени адекватными содержанию задачи. Это позволяет говорить о разных уровнях оперативных единиц.

Проблема различных уровней ОЕП широко разрабатывалась в исследованиях Г. В. Репкиной. Автором показано, что единицы низшего уровня отражают внешние, эмпирически выделяемые свойства материала, учет которых едва обеспечивает достижение цели действия. На основе учета наиболее существенных, закономерных внутренних свойств материала образуются оптимальные ОЕП, — они в наибольшей степени адекватны решаемой задаче. Между этими крайними полюсами располагается гамма единиц промежуточного уровня, в основе которых лежит все более полное отражение существенных свойств материала.

Уровень ОЕП не является константным свойством человека, он складывается в процессе обучения выполнению данного вида деятельности. Решающую роль в процессе формирования единиц того или иного

76

уровня играет не столько объем тренировки, сколько метод обучения. ОЕП оптимального уровня формируются при специальной направленности деятельности субъекта на самостоятельное выделение в процессе решения задач наиболее существенных свойств объекта действия и нахождение соответствующего этим свойствам алгоритма решения.

Вопрос о влиянии избыточности сообщений на запоминание, его скорость и продуктивность требует экспериментальной проверки. Под избыточностью понимают меру организации, меру ограничений в сообщении, определяемую его структурой. Сообщением называют любую форму представления информации (изображение, последовательность цифр, буквенный текст и т. п.).

По вопросу о влиянии избыточности на продуктивность запоминания получены противоречивые данные. Ряд авторов (Ф. Эттнив, 1955 и др.) на основании результатов экспериментальных исследований, в которых избыточность достигалась либо уменьшением средней информации на символ, либо путем добавления символов, не несущих информации, делают вывод об отрицательном влиянии избыточности на запоминание. Правомерность такого заключения вызывала сомнение у П. Б. Невельского. Более продуктивное запоминание случайных сообщений, где деятельность испытуемых ограничена простым повторением и установлением лишь внешних связей по смежности или по сходству, по сравнению с избыточными сообщениями, где деятельность при запоминании заключается в установлении внутренних смысловых связей и закономерностей строения материала, кажется парадоксом. В исследованиях П. Б. Невельского и его соавторов (1964) были получены факты, свидетельствующие о положительном влиянии избыточности на запоминание. Избыточность материала создает возможности для применения эффективных способов мнемической деятельности испытуемых, результатом которой является образование более крупных субъективных символов, «кусков» информации, которыми оперирует человек в процессе запоминания.

77

1   2   3   4   5   6   7   8   9   ...   51

Похожие:

Когнитивная и прикладная психология icon Когнитивная психология
С60 Когнитивная психология / Р. Солсо. — 6-е изд. — Спб.: Питер, 2006. — 589 с: ил. — (Серия «Мастера психологии»)
Когнитивная и прикладная психология icon Общие вопросы психологии развития
Психология развития и возрастная психология. Психология развития как прикладная отрасль. Основные задачи психологии развития. Связи...
Когнитивная и прикладная психология icon Основная образовательная программа 231300 Прикладная математика Квалификация...
Преподаваемая дисциплина является средством решения математических задач при помощи программирования на языке C++
Когнитивная и прикладная психология icon Методические рекомендации Москва, 2005 мгппу рекомендации составлены...
Рекомендации составлены на кафедре «Прикладная информатика» факультета информационных технологий в помощь студентам и носят практический...
Когнитивная и прикладная психология icon Программа дисциплины «Социальная психология»
Примерная программа дисциплины «Социальная психология» составлена в соответствии с государственным образовательным стандартом высшего...
Когнитивная и прикладная психология icon Тема: криминальная психология
Правовая психология является системно-структурным элементом юридической психологии
Когнитивная и прикладная психология icon The guilford press
Б42 Когнитивная терапия: полное руководство: Пер с англ. М.: Ооо "И. Д. Вильямс", 2006. 400 с.: ил. Парал тит англ
Когнитивная и прикладная психология icon Учебник «Возрастная психология» представляет собой развернутый курс...
В книге реализован периодизационный подход к анализу возрастного развития, методологические принципы которого заложены Л. С. Выготским,...
Когнитивная и прикладная психология icon Оглавление
Хрестоматия является учебным пособием по курсу «Зоо­психология и сравнительная психология» для студентов фа­культетов и отделений...
Когнитивная и прикладная психология icon Методические рекомендации по выполнению контрольной работы по дисциплине «Прикладная экономика»
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования
Литература


При копировании материала укажите ссылку © 2015
контакты
literature-edu.ru
Поиск на сайте

Главная страница  Литература  Доклады  Рефераты  Курсовая работа  Лекции