Учебное пособие удк 159. 9(075) Печатается ббк 88. 2я73 по решению Ученого Совета




Скачать 5.07 Mb.
Название Учебное пособие удк 159. 9(075) Печатается ббк 88. 2я73 по решению Ученого Совета
страница 13/28
Дата публикации 16.05.2014
Размер 5.07 Mb.
Тип Учебное пособие
literature-edu.ru > Психология > Учебное пособие
1   ...   9   10   11   12   13   14   15   16   ...   28

Низшие позвоночные. Первые движения зародышей рыб, по данным ряда исследователей, также возникают спонтанно на эндогенной основе. Еще в 20-х годах было показано, что движения зачатков органов появляются в строгой последовательности, в зависимости от созревания соответствующих нервных связей. После появления сенсорных нервных элементов на поведение зародыша начинают влиять и экзогенные факторы (например, прикосновения), которые сочетаются с генетически предопределенной координацией движений. Постепенно первоначально генерализованные движения зародыша дифференцируются.

Вообще у зародышей костистых рыб обнаруживаются к концу эмбриогенеза такие движения: дрожание, подергивание отдельных частей тела, вращение, змеевидное изгибание. Кроме того, перед вылуплением производятся своеобразные «клевательные» движения, облегчающие выход из яйцевидной оболочки. Кроме того, выклеву способствуют и изгибательные движения тела. В ряде случаев удалось установить четкую связь между появлением новых двигательных актов и общим анатомическим развитием.

Сходным образом совершается формирование эмбрионального поведения и у земноводных. Из первоначально генерализованного сгибания всего тела зародыша постепенно формируются плавательные движения, движения конечностей и т.д., причем и здесь двигательная активность развивается первично на эндогенной основе.

Интересный пример представляет в этом отношении жаба Eleutherodactylus martinicensis с острова Ямайка, у которой выход из икринки как бы задерживается и личинка развивается внутри яйцевых оболочек. Тем не менее, у нее проявляются все движения, свойственные свободноплавающим личинкам (головастикам) других бесхвостых земноводных. Как и у последних, плавательные движения формируются у этой личинки постепенно из более генерализованных двигательных компонентов: первые движения конечностей еще слиты с общим извиванием всего тела, но уже спустя сутки можно вызвать одиночные рефлекторные движения одних конечностей независимо от движений мышц туловища; несколько позже и в строгой последовательности появляются более дифференцированные и согласованные движения всех четырех конечностей, и, наконец, возникают во всех деталях вполне координированные плавательные движения с участием всех соответствующих моторных компонентов, хотя плавать сформировавшаяся к этому времени личинка еще не начинала, ибо она по-прежнему заключена в яйцевые оболочки.

Что же касается хвостатых амфибий, то Когхилл показал в свое время, что эмбрион амбистомы производит плавательные движения еще задолго до вылупления, изгибаясь сперва наподобие буквы «С» и позже как буква «S». Еще позже появляются движения ног, типичные для передвижения по суше взрослой амбистомы, причем нейромышечная система, детерминирующая первичные плавательные движения, определяет и эти локомоторные элементы, особенно последовательность и ритм движений. Кармайкл сумел на этом же объекте доказать, что этот механизм созревает без научения. Он вырастил эмбриона амбистомы в анестезирующем растворе ацетонхлороформа, который полностью обездвиживал зародыш, но не препятствовал его росту и морфогенезу. В таких условиях локомоторные способности развивались вполне нормально, и в итоге они не отличались от таковых контрольных организмов, развитие которых совершалось в обычных условиях. Из своих опытов Кармайкл вывел заключение, что формирование способности к плаванию не нуждается в процессах научения, а зависит исключительно от анатомического развития.

Однако, как справедливо отмечал по поводу этих опытов польский зоопсихолог Я. Дембовский, у подопытных эмбрионов подавлялись лишь мышечные движения, возможность накопления двигательного эмбрионального опыта, но не другие функции, в частности процессы в развивающейся нервной системе. Невозможно, как пишет Дембовский, создать такие экспериментальные условия, при которых нервная система развивалась бы, не функционируя. Поскольку нервная система начинает функционировать еще до того, как она окончательно сформировалась, это функционирование также является своего рода упражнением, которое в свою очередь является важным фактором развития нервной деятельности, а тем самым всего поведения зародыша.

Для выявления эндогенной обусловленности формирования двигательной активности зародышей производились интересные опыты на эмбрионах саламандр: пересаживались зачатки конечностей таким образом, что последние оказывались повернутыми в обратную сторону. Если бы формирование их движений определялось эмбриональным упражнением (путем афферентной обратной связи), то в ходе эмбриогенеза должна была бы произойти соответствующая функциональная коррекция, восстанавливающая способности к нормальному поступательному движению. Однако этого не произошло, и после вылупления животные с повернутыми назад конечностями пятились от раздражителей, которые у нормальных особей обусловливают движение вперед. Сходные результаты были получены и у эмбрионов лягушек: перевертывание зачатков глазных яблок на 180° привело к тому, что оптокинетические реакции оказались у этих животных смещенными в обратном направлении.

Все эти данные приводят к заключению, что формирование в эмбриогенезе локомоторных движений и оптомоторных реакций (а также некоторых других проявлений двигательной активности) происходит у низших позвоночных, очевидно, не под решающим влиянием экзогенных факторов, а в результате эндогенно обусловленного созревания внутренних функциональных структур.

Птицы. Эмбриональное поведение птиц изучалось преимущественно на зародышах домашней курицы. Уже в конце вторых суток появляется сердцебиение, а начало спонтанной двигательной активности куриного эмбриона приурочено к 4-му дню инкубации. Весь период инкубации длится три недели. Движения начинаются с головного конца и постепенно простираются к заднему, охватывая все большие участки тела зародыша. Самостоятельные движения органов (конечностей, хвоста, головы, клюва, глазных яблок) появляются позже.

Как уже говорилось, Куо установил наличие и показал значение эмбриональной тренировки у зародыша курицы (а также других птиц), но впал при этом в односторонность, отрицая наличие врожденных компонентов поведения и спонтанной активности как таковой. В дополнение к сказанному приведем еще несколько примеров из работ этого выдающегося исследователя.

Куо установил, что максимальная двигательная активность эмбриона совпадает по времени с движениями амниона, т.е. внутренней зародышевой оболочки, обволакивающей зародыш. Из этого Куо заключил, что пульсация оболочки обусловливает начато двигательной активности последнего. Впоследствии, однако, В. Гамбургером было показано, что нет подлинной синхронизации между этими двигательными ритмами, а Р. В. Оппенгейм экспериментально доказал, что движения эмбриона не только не зависят от движения амниона, а, возможно, даже сами обусловливают их.

Формирование клевательных движений, по Куо, первично определяется ритмом биения сердца зародыша, ибо первые движения клюва, его открывание и закрывание, совершаются синхронно с сокращениями сердца. Впоследствии эти движения коррелируются со сгибательными движениями шеи, а незадолго до вылупления клевательный акт следует за любым раздражением тела в любой его части. Таким образом, реакция клевания, сформировавшаяся путем эмбриональной тренировки, имеет к моменту вылупления птенца весьма генерализованный характер. «Сужение» реакции в ответ на действие лишь биологически адекватных раздражителей происходит на первых этапах постэмбрионального развития. По Куо, так обстоит дело и с другими реакциями.

Важную роль в формировании эмбрионального поведения Куо отводил также непосредственному влиянию среды, окружающей зародыш, и происходящим в ней изменениям. Так, например, у куриного зародыша начиная с 11-го дня инкубации желточный мешок начинает надвигаться на брюшную сторону зародыша, все больше стесняя движения ног, которые до вылупления сохраняют согнутое положение, причем одна нога располагается поверх другой. По мере того как желток всасывается зародышем, верхняя нога получает все большую свободу движения, однако находящаяся под ней нога по-прежнему лишена такой возможности. Лишь после того как верхняя нога получит возможность достаточно далеко отодвигаться, нижняя может начать двигаться.

Таким образом, движения ног развиваются с самого начала не одновременно, а последовательно. Куо считал, что именно этим определяется развитие механизма последовательных движений ног цыпленка при ходьбе, что здесь кроется первопричина того, что вылупившийся из яйца цыпленок передвигается шагами, попеременно переставляя ноги, а не прыжками, отталкиваясь одновременно обеими лапками. Поддерживая концепцию Куо, Боровский писал по этому поводу, что «цыпленок шагает не потому, что у него имеется "инстинкт шагания", а потому, что иначе не могут работать его ноги и их механизм, выросшие и развившиеся в таких именно условиях. Механизм этот не появится как нечто готовое в тот момент, когда он понадобится, а развивается определенным путем, под влиянием других факторов».*

Многие механистические концепции Куо не выдержали экспериментальной проверки, произведенной более поздними исследователями, другие еще нуждаются в такой проверке, тем более что вскрытые им коррелятивные отношения не обязательно указывают на причинные связи. Не подтвердилось, в частности, мнение Куо о том, что ведущим фактором двигательной активности зародыша в раннем эмбриогенезе является сердцебиение.

Гамбургером и его сотрудниками было установлено, что уже на ранних стадиях эмбриогенеза движения зародыша имеют нейрогенное происхождение. Электрофизиологические исследования показали, что уже первые движения обусловливаются спонтанными эндогенными процессами в нервных структурах куриного эмбриона. Спустя 3,5–4 дня после появления первых его движений наблюдались первые экстероцептивные рефлексы, однако, Гамбургер, Оппенгейм и другие показали, что тактильная, точнее, тактильнопроприоцептивная стимуляция не оказывает существенного влияния на частоту и периодичность движений, производимых куриным эмбрионом на протяжении первых 2–2,5 недель инкубации. По Гамбургеру, двигательная активность зародыша на начальных этапах эмбриогенеза «самогенерируется» в центральной нервной системе.

Гамбургером производился следующий опыт: перерезав зачаток спинного мозга в первый же день развития куриного эмбриона, он регистрировал впоследствии (на 7-й день эмбриогенеза) ритмичные движения зачатков передних и задних конечностей. Нормально эти движения протекают синхронно. У оперированных же эмбрионов эта согласованность нарушилась, но сохранилась самостоятельная ритмичность движений.

Это указывает на независимое эндогенное происхождение этих движений, а тем самым и соответствующих нервных импульсов, на автономную активность процессов в отдельных участках спинного мозга. С развитием головного мозга он начинает контролировать эти ритмы. Вместе с тем эти данные свидетельствуют о том, что двигательная активность не обусловливается исключительно обменом веществ, например, такими факторами, как уровни накопления продуктов обмена веществ или снабжения тканей кислородом, как это принималось некоторыми учеными.

При изучении эмбрионального развития поведения птиц необходимо учитывать специфические особенности биологии исследуемого вида, которые отражаются и на протекании эмбриогенеза. Особенно это касается различий между выводковыми (зрелорождающимися) и птенцовыми (незрелорождающимися) птицами. Так, например, как показал советский исследователь Д. Н. Гофман, по сравнению с курицей грач развивается более ускоренно, быстрее накапливается масса тела зародыша, зато у курицы эмбриогенез проходит более равномерно и имеется больше периодов роста и дифференциации. Последний период формирования морфологических структур и поведения проходит у курицы еще внутри яйца, у грача же (как не зрелорождающейся птицы) этот период относится к постэмбриональному развитию.

Млекопитающие. В отличие от рассмотренных до сих пор животных зародыши млекопитающих развиваются в утробе матери, что существенно усложняет (и без того весьма трудное) изучение их поведения, поэтому по эмбриональному поведению млекопитающих накоплено значительно меньше данных, чем по куриному эмбриону и зародышам земноводных и рыб. Непосредственные визуальные наблюдения возможны лишь на эмбрионах, извлеченных из материнского организма, что резко искажает нормальные условия их жизни. Рентгенологические исследования указывают на то, что двигательная активность таких искусственно изолированных зародышей выше, чем в норме. Вместе с тем именно на таких объектах, преимущественно зародышах грызунов, были получены те данные, которыми мы сегодня располагаем.

Так, например, по Кармайклу, развитие двигательной активности совершается у зародыша морской свинки следующим образом. Первые движения состоят в подергивании шейно-плечевого участка туловища эмбриона. Они появляются приблизительно на 28-й день после оплодотворения. Постепенно появляются и другие весьма разнообразные движения, а к 53-му дню, т.е. приблизительно за неделю до родов, формируются четко выраженные реакции, которые достигают максимального развития за несколько дней до рождения. У такого эмбриона обнаруживаются уже вполне адекватные, и главное, видоизменяющиеся рефлекторные ответы на тактильные раздражения: прикосновение волоском к коже около уха вызывает специфическое подергивание последнего, непрерывное продолжение этого раздражения или его многократное повторение – приведение конечности данной стороны к раздражителю, чем нередко достигается его удаление; если же и после этого продолжать раздражение, то приходит в движение вся голова, а затем и туловище эмбриона, что может привести к его вращению, и наконец, по выражению Кармайкла, «каждая мышца приводится в действие». Кармайкл говорил по этому поводу, что эмбрион ведет себя как бы согласно пословице: «если не сразу достиг успеха – пробуй, пробуй еще», но подчеркивал, что нет оснований предполагать, чтобы что-либо в этом поведении являлось выученным.

Эмбриональное развитие поведения млекопитающих существенно отличается от такового у других животных. Это отличие выражается в том, что у млекопитающих движения конечностей формируются не из первоначальных общих движений всего зародыша, как мы это видели у вышеупомянутых других позвоночных, особенно низших, а появляются одновременно с этими движениями или даже раньше их. Вероятно, в эмбриогенезе млекопитающих большее значение приобрела ранняя афферентация, чем спонтанная эндогенная нейростимуляция.

Постоянная тесная связь развивающегося зародыша с материнским организмом, в частности посредством специального органа – плаценты, создает у млекопитающих совершенно особые условия для развития эмбрионального поведения. Новым и весьма важным фактором является в этом отношении возможность воздействия на этот процесс со стороны материнского организма, прежде всего гуморальным путем.

На такую возможность косвенно указывают результаты экспериментов, при которых на женских зародышей морской свинки еще во время их внутриутробного развития воздействовали мужским половым гормоном (тестостероном). В результате, став половозрелыми, они проявили признаки самцового поведения в ущерб сексуальному поведению, свойственному нормальным самкам. Аналогичное воздействие, произведенное после рождения, не давало такого эффекта. Подобным образом удавалось преобразовывать и половое поведение мужских особей. Очевидно, в ходе эмбриогенеза содержание тестостерона в организме зародыша влияет на формирование центральных нервных структур, регулирующих сексуальное поведение: его отсутствие – в сторону женских признаков, его наличие – в сторону мужских.

В экспериментах ряда исследований у беременных самок крыс периодически вызывали состояния беспокойства. В таких условиях родились более пугливые и возбудимые детеныши, чем в норме, несмотря на то, что их затем вскармливали другие самки, не подвергавшиеся экспериментальным воздействиям. Эти данные особенно отчетливо показывают роль влияния материнского организма на формирование признаков поведения детеныша в эмбриональном периоде его развития.
7.2.3. ПРЕНАТАЛЬНОЕ РАЗВИТИЕ СЕНСОРНЫХ СПОСОБНОСТЕЙ И ЭЛЕМЕНТОВ ОБЩЕНИЯ
Влияние сенсорной стимуляции на двигательную активность эмбриона
Выше приводились примеры рефлекторных движений зародышей, производимых преимущественно в ответ на тактильные раздражения. Сенсомоторная активность составляет единый процесс на всех этапах жизни животного, хотя, как мы видели, двигательный компонент является в эмбриогенезе первичным и может возникнуть на эндогенной основе. Вместе с тем, по мере развития эмбриона и формирования его рецепторных систем, все большее значение приобретает сенсорная стимуляция, выступающая, очевидно, также в форме самостимуляции.

Куо видел такую самостимуляцию, в частности, в том, что куриный зародыш прикасается одной частью тела (например, ногой или крылом) к другой части (например, голове) и вызывает тем самым двигательную реакцию последней. Оппенгейм, правда ссылаясь на собственные исследования и работы других авторов, ставит под сомнение правомерность выводов Куо о таком механизме самостимуляции, но не отрицает существования эмбриональных сенсомоторных связей, как и значения сенсорной стимуляции в эмбриональном поведении.

Еще в начале 30-х годов Д.В.Орр и В.Ф.Уиндл сумели показать, что наряду со спонтанной двигательной активностью у куриного эмбриона развивается рефлекторная система движений. Изолированные движения крыла возникают в ответ на тактильное раздражение уже на ранних стадиях эмбриогенеза; это указывает на то, что потенциальные возможности рефлекторных реакций существуют уже тогда, когда еще отсутствуют реальные возможности внешней аффектации и двигательная активность зародыша проявляется лишь в общих спонтанных телодвижениях. Эти же ученые установили, что у куриного эмбриона моторные структуры нервной системы формируются раньше сенсорных, а первые реакции на внешние раздражения появляются лишь через четыре дня после первых спонтанных движений.

Однако наибольшее значение сенсорная стимуляция приобретает у куриного зародыша на последних стадиях эмбриогенеза, за 3–4 дня до вылупления. Именно в этот период в развитие поведения включаются у птиц как мощные внешние факторы оптические и акустические стимулы, подготавливающие птенцов к биологически адекватному общению с родительскими особями.
Развитие зрения и слуха у эмбрионов птиц
Зрение и слух появляются лишь к концу эмбриогенеза и не влияют на развитие ранней двигательной активности зародыша. Правда, как было установлено рядом советских исследователей, сильные внешние раздражения способны вызвать реакции куриного зародыша уже на средних и даже ранних стадиях эмбриогенеза. Реакции на громкие звуки обнаруживаются не только после 14–19-го дня, когда уже начинает функционировать орган слуха, но и даже начиная с 5-го дня инкубации. В это же время можно вызвать реакции и на мощные световые воздействия. Все эти реакции выражаются в усилении или торможении эмбриональных движений. Однако, не говоря уже о том, что в данных экспериментах зародыши подвергались экстремальным, биологически неадекватным воздействиям, свет и звук могут на этом этапе выступать лишь как физические агенты, непосредственно влияющие на мышечную ткань или кожу, но не как носители оптической или акустической информации.

Если же, как явствует из новых данных американского ученого Г. Готтлиба, воздействовать на зародыш биологически адекватными, т.е. обычно встречающимися в природе, звуками на такой стадии, когда он еще не реагирует на подобные раздражения, то это может положительно сказаться на появляющихся позже слуховых реакциях эмбриона.

Что касается развития оптических реакций, то только начиная с 17–18-х суток инкубации в глазу и зрительных долях куриного эмбриона обнаруживаются электрофизиологические изменения в ответ на оптические раздражения. У зародыша пекинской утки, например, зрачковый рефлекс появляется на 16-й день инкубации, но это чисто фотохимическая реакция, которая не имеет функционального значения и сменяется на 18-й день (т.е. относительно раньше, чем у куриного эмбриона) подлинно нервной реакцией. Очевидно, к этому времени уже функционируют периферические и центрально-нервные элементы зрительного анализатора. Перед вылуплением птенцов зрачковый рефлекс практически уже так же развит, как у взрослой утки.
Развитие акустического контакта между эмбрионами и родительскими особями у птиц
У эмбрионов многих птиц в последние дни перед вылуплением не только начинают вполне функционировать дистантные рецепторы, т.е. органы зрения и слуха, но и появляются первые активные действия, направленные на внешнюю среду, а именно подача сигналов насиживающим родительским особям. Так, например, у представителя отряда чистиков кайры птенец научается еще за 3–4 дня до вылупления отличать голос родительской особи от голосов других кайр, гнездящихся в тесном соседстве на птичьих базарах. Если передискусственно инкубируемыми яйцами проигрывать магнитофонную запись криков какой-либо определенной взрослой кайры, а затем воспроизводить эту запись одновременно с записью криков другой кайры перед вылупившимися из этих яиц птенцами, то они направятся в сторону звуков, которые слышали еще до вылупления. Контрольные же птенцы из «неозвученных» яиц направятся в промежуток между источниками звуков, а затем начнут метаться между ними. Было установлено, что распознавание родительского голоса (в отличие от голосов соседних птиц) осуществляется на основе согласования ритмов подачи звуков родителя и невылупившегося птенца: в ответ на писк последнего насиживающая птица приподнимается, передвигает яйцо и сама подает голос. Таким образом, кинестетические ощущения эмбриона сочетаются с акустическими, а в целом его активность совпадает с таковой взрослой птицы, что и позволяет установить принадлежность услышанного звука родительской особи (исследования Б. Чанц).

В этом примере мы видим, как созревшее в эмбриогенезе врожденное, инстинктивное поведение (локомоторная реакция вылупившихся в изоляции птенцов на видоспецифический звук, т.е. на ключевой раздражитель) сочетается с истинным эмбриональным научением (условнорефлекторным путем), результатом которого является индивидуальное опознавание еще в пренатальном периоде развития, дифференцировка индивидуальных отличий видотипичных звуков. Именно в этом направлении совершается достройка соответствующего врожденного пускового механизма птенца, его обогащение необходимыми дополнительными признаками путем научения (в данном случае пренатального). Мы еще встретимся с этим вопросом при рассмотрении процессов запечатления. Сейчас же нам важно отметить, что между эмбрионом и родительской особью происходит обмен сигналами и возникает первичная коммуникация.

Сходные результаты были получены и у других видов птиц, в том числе у близкой родственницы кайры гагарки. Пренатальное распознавание голосов родителей было установлено также у гусиных (канадская казарка), куликов (кулик-сорока) и представителей других отрядов птиц. В частности, сравнение поведения птенцов, выведенных в инкубаторе в условиях звуковой изоляции, с таковым птенцов, слышавших крики взрослых птиц своего вида незадолго до вылупления, показало существенное значение эмбрионального научения и у чаек. Немецкая исследовательница М.Импековен установила, что изменения в поведении взрослых чаек (Larus atricilla) при переходе от насиживания к уходу за птенцами в большой степени обусловливаются акустическими сигналами, подаваемыми птенцами перед выклевом. При таких звуках насиживающая птица начинает посматривать вниз, на яйца, попеременно вставать и садиться, перекатывать яйца, отряхиваться и издавать ответные крики. Эти реакции удалось вызвать, воспроизводя издаваемые птенцом звуки в «чистом виде», т.е. в магнитофонной записи. При их замедленном проигрывании, т.е. изменении физических параметров звуков, реакции родительской особи ослабевают и появляются реже. С другой стороны, Импековен удалось экспериментально доказать, что родительские крики, услышанные птенцами еще до вылупления, стимулируют клевательные движения последних, в том числе и постнатальное клевание клюва родительской особи, т.е. «попрошайничество». Таким образом, стимулирующее влияние родительских криков проявляется здесь как результат пренатального накопления опыта.
7.2.4. ЭМБРИОГЕНЕЗ И РАЗВИТИЕ ПСИХИЧЕСКОГО ОТРАЖЕНИЯ
Как видно из изложенного, в эмбриогенезе происходит интенсивная подготовка к последующим, постнатальным этапам формирования поведения, а отчасти и само формирование элементов поведения новорожденного путем, с одной стороны, развития генетически обусловленных компонентов активности и, с другой стороны, накопления эмбрионального опыта. Как и в постнатальной жизни животного, эти две стороны единого процесса развития поведения – врожденное и приобретаемое – невозможно отрывать друг от друга и изучать вне их взаимосвязи, поэтому неверно рассматривать эмбриогенез поведения с точки зрения альтернативы: созревание врожденных элементов поведения или эмбриональное упражнение. В каждом случае речь может идти лишь о том, какой из этих компонентов превалирует или даже доминирует. И здесь сложным образом переплетаются воздействия различных факторов в разных соотношениях и сочетаниях, как это происходит и на постнатальном этапе развития.

При этом необходимо, естественно, учитывать те специфические особенности, которыми отличается пренатальное развитие поведения животных. Это касается прежде всего роли внешней среды в формировании пренатальной двигательной активности и психической деятельности.

Приведенные выше данные показывают, что развитие поведения в пренатальном периоде онтогенеза совершается у низших и высших животных неодинаково, хотя и обнаруживает ряд общих черт. Эти филогенетические различия обусловлены закономерностями эволюции эмбриогенеза, установленными прежде всего Северцовым, о чем уже говорилось выше. Но в целом можно сказать, что у всех животных – во всяком случае на ранних стадиях эмбриогенеза – прямые влияния внешней среды играют незначительную роль (или не играют вообще никакой роли) в формировании отдельных форм двигательной активности.

Средой, в которой развивается эмбрион млекопитающего, является материнский организм, который не только хранит и защищает его от неблагоприятных воздействий, но и непосредственно обеспечивает всю его жизнедеятельность. Поэтому утроба является средой обитания зародыша, на которую направлена его активность. Однако связь эмбриона с подлинным внешним миром, в котором протекает вся постнатальная жизнь развивающегося организма, осуществляется лишь опосредованно через организм матери и не может иметь существенного значения для развития психики млекопитающего во внутриутробном периоде его развития.

В отличие от млекопитающих и, вероятно, других живородящих животных при внеутробном развитии зародыш часто подвергается воздействиям различных агентов внешней среды. Однако, как уже отмечалось, экспериментальные исследования показали, что эти агенты едва ли могут непосредственно направлять развитие первичных форм двигательной активности эмбриона. Но если даже допустить обратное, а именно что такие воздействия в состоянии оказать прямое влияние на формирование этой активности, то такая связь по необходимости была бы односторонней, ибо сфера двигательной активности зародыша не простирается дальше яйцевых оболочек и не может вызвать физические изменения в окружающей среде. Но это означает, что отсутствует важнейший источник психической деятельности.

Другое обстоятельство, крайне лимитирующее возможности развития психики в эмбриональном периоде развития, – это однородность, постоянство и бедность компонентами среды, которая окружает зародыша как в яйце (птичьем или икринке), так и в утробе млекопитающего. Там ему практически «нечего отражать». Поэтому будет, очевидно, правильно сказать, что психика эмбриона – это психика в процессе ее становления. Эмбрион – это еще не полноценное животное, а формирующийся организм животного на начальном этапе своего развития. Животная жизнь невозможна без активного взаимодействия с внешней (т.е. постнатальной) средой, а как раз это взаимодействие еще отсутствует на эмбриональном этапе развития, по меньшей мере на его ранних стадиях. В ходе эмбриогенеза осуществляется лишь подготовка к этому взаимодействию.

На ранних стадиях эмбриогенеза формируются предпосылки, потенциальные возможности психического отражения, т.е. существуют только зачаточные формы элементов психики. Лишь по мере того как формируются органы и системы органов развивающегося организма и появляется необходимость установления и расширения связей с внешним миром, зарождается и развивается психическое отражение, которое является функцией этих структур и служит установлению этих связей.

Как было показано, это происходит в конце эмбриогенеза, во всяком случае у птиц, у которых наряду с весьма дифференцированной двигательной активностью (и на ее основе) появляется коммуникативное поведение, обеспечивающее установление контактов с внешним миром (конкретно – с родительской особью) еще до вылупления.

Во взаимосвязях между невылупившимся птенцом и родительской особью, в согласовании их поведения на протяжении последних дней инкубации проявляется уже достаточно сложная психическая деятельность эмбриона. Правда, это относится лишь к заключительной стадии пренатального онтогенеза. При этом необходимо также учесть, что такая психическая активность зародыша едва ли свойственна млекопитающим, у которых эмбриональное развитие является по сравнению с птицами относительно укороченным: детеныши рождаются на более ранних стадиях эмбриогенеза, на которых можно предположить наличие лишь примитивных элементов будущей психической активности.

Итак, можно сказать, что значение эмбриогенеза для формирования психической деятельности состоит в том, чтобы подготовить морфофункциональную основу психического отражения. Это относится как к двигательным компонентам психической деятельности, так и к подготовке условий для функционирования сенсонейромоторных систем на постэмбриональном этапе развития.

Ясно, что будет поздно, если эти предпосылки начнут формироваться лишь после появления животного на свет, поэтому такая база должна уже существовать к началу постнатального развития, чтобы организм мог приступить к построению всесторонних отношений с компонентами среды его обитания. Для подготовки этой базы достаточна генетически фиксированная спонтанная двигательная активность эмбриона, дополняемая более или менее выраженным эмбриональным научением. Такая активность может формироваться и в той константной, однообразной, нерасчлененной, бедной предметными компонентами среде, в которой живет и развивается зародыш.
ВОПРОСЫ ДЛЯ КОНТРОЛЯ:


  1. В чем заключается принципиальное отличие процесса онтогенеза, у животных имеющих стадию личинки, и у тех, которые ее не имеют?

  2. Перечислите основные периоды онтогенеза позвоночных животных.

  3. Охарактеризуйте каждый из периодов онтогенеза.

  4. Что такое эмбриональное научение?

  5. Каким путем осуществляется взаимодействие между организмом матери и плодом у млекопитающих?

  6. Расскажите о способах контактах птиц с птенцами до их вылупления.


1   ...   9   10   11   12   13   14   15   16   ...   28

Похожие:

Учебное пособие удк 159. 9(075) Печатается ббк 88. 2я73 по решению Ученого Совета icon Учебное пособие Северо-Кавказский социальный институт 2004 удк 572...
В пособии раскрываются морфо-функциональные и психофизиологические основы изменений, происходящих с человеком на протяжении всей...
Учебное пособие удк 159. 9(075) Печатается ббк 88. 2я73 по решению Ученого Совета icon Учебное пособие Санкт-Петербург Издательство «Дидактика Плюс»
Печатается по решению Ученого Совета Института специальной педагогики и психологии Международного университета семьи и ребенка имени...
Учебное пособие удк 159. 9(075) Печатается ббк 88. 2я73 по решению Ученого Совета icon Учебно-методическое пособие удк 159. 9 (075. 8) Ббк 88. 8я73 г 182 isbn 5-98534-569-6 Гамезо
Общая психология: Учебно-методическое пособие / Под общ ред. М. В. Гамезо. М.: Ось-89, 2007. 352 с
Учебное пособие удк 159. 9(075) Печатается ббк 88. 2я73 по решению Ученого Совета icon Отечественная история Планы семинарских занятий Казань 2010 ббк т3(2)я...
Ислаев Ф. Г., д и н., профессор кафедры истории и обществоведческих дисциплин иро рт
Учебное пособие удк 159. 9(075) Печатается ббк 88. 2я73 по решению Ученого Совета icon Учебное пособие Нижний Новгород 2007 Печатается по решению редакционно-издательского...
История России: основные термины и понятия: Учебное пособие / Составитель к и н. Н. Н. Грехова. Н. Новгород, 2007. 33 с
Учебное пособие удк 159. 9(075) Печатается ббк 88. 2я73 по решению Ученого Совета icon Пособие Минск 2005 удк 159. 9(075. 8)
В 64 Сборник психологических тестов. Часть I: Пособие / Сост. Е. Е. Миронова – Мн.: Женский институт энвила, 2005. – 155 с
Учебное пособие удк 159. 9(075) Печатается ббк 88. 2я73 по решению Ученого Совета icon Пособие Минск 2006 удк 159. 9(075. 8)
В 64 Сборник психологических тестов. Часть III: Пособие / Сост. Е. Е. Миронова – Мн.: Женский институт энвила, 2006. – 120 с
Учебное пособие удк 159. 9(075) Печатается ббк 88. 2я73 по решению Ученого Совета icon Учебное пособие предназначено для студентов, аспирантов и препо­давателей...
Печатается по решению редакционно-издательского совета Таганрогского государственного радиотехнического университета
Учебное пособие удк 159. 9(075) Печатается ббк 88. 2я73 по решению Ученого Совета icon Учебно-методическое пособие Нижний Новгород
Печатается по решению редакционно-издательского совета Нижегородского государственного педагогического университета
Учебное пособие удк 159. 9(075) Печатается ббк 88. 2я73 по решению Ученого Совета icon По теории и методике обучения математике Учебно-методическое пособие Нижний
Печатается по решению редакционно-издательского совета Нижегородского государственного педагогического университета
Литература


При копировании материала укажите ссылку © 2015
контакты
literature-edu.ru
Поиск на сайте

Главная страница  Литература  Доклады  Рефераты  Курсовая работа  Лекции