Математического развития




Скачать 4.07 Mb.
Название Математического развития
страница 6/27
Дата публикации 28.09.2014
Размер 4.07 Mb.
Тип Документы
literature-edu.ru > Математика > Документы
1   2   3   4   5   6   7   8   9   ...   27

1 Изображение множеств с помощью кругов было предложено выдающимся математи­ком Леонардом Эйлером (1707—1783). Поэтому такие круговые диаграммы называют круга­ми Эйлера, иногда диаграммами Эйлера—Венна.

Зависимость истинностного значения конъюнкции от истин­ностных значений составляющих предложений определяется обычным смыслом союза и: конъюнкция «Р и Q» истинна тогда и только тогда, когда истинны оба составляющих ее предложения Р и Q. Это можно записать в виде следующей истинностной табли­цы, дающей истинностные значения конъюнкции при любых воз­можных комбинациях истинностных значений составляющих (см. табл. 1).

Таблица 1. Истинностные значения конъюнкции




Р

Q

PhQ




И

и

И




и

д

Л
















гт

И

л




л




л

Л

л

В логике конъюнкция обозначается знаком «л», т. е. вместо «Р и О» пишут «PaQ».

Объединение множеств и дизъюнкция предложений

Обратимся еще раз к игре с двумя обручами, изображенной на илл. 5. Поставим еще один вопрос: «Какое множество блоков ока­залось внутри хотя бы одного из двух обручей: красного или чер­ного?» Этот вопрос сложный, так как характеристическое свойст­во этого множества требует применения союза или в нераздели­тельном (соединительном) смысле, что вызывает затруднения не только у дошкольников.

Правильный ответ на поставленный вопрос может быть сфор­мулирован следующим образом. Внутри хотя бы одного из двух обручей находится множество блоков, каждый из которых крас­ный или круглый. Это множество состоит из всех красных не круг­лых, красных круглых и не красных круглых блоков (изображен­ных соответственно областями (2), (1), (3) в диаграмме (илл. 5).

В общем виде можно сформулировать так. Если множество А характеризуется свойством Р, множество В — свойством Q, то множество, состоящее из всех предметов, являющихся элемента­ми хотя бы одного из этих двух множеств, характеризуется свой­ством Р или Q.

Это множество называется объединением множеств А и В и обозначается «ЛиВ».

Итак, объединением ЛоВ двух множеств А и В называется мно­жество, состоящее из всех тех и только тех элементов, которые принадлежат множеству А или множеству В.

Союз или понимается здесь в неразделительном смысле, т. е. каждый элемент объединения A\jB должен принадлежать хотя бы одному из множества А, В, т. е. или А, или В, или обоим множест­вам An В.

Таким образом, если характеристические свойства множеств А и В выражаются с помощью предложений Р и Q соответственно, то характеристическое свойство объединения АиВ выражается пред­ложением «Р или Q», составленным из предложений Р и Q с помо­щью союза или, понимаемого в неразделительном смысле. Это предложение называется дизъюнкцией предложений Ри Q (от лат. disjunctio разобщение, различие).

В обыденной речи союз или применяется в двух различных смыслах: неразделительном (соединительном), когда составное предложение, образованное с помощью этого слова, считается ис­тинным в случае, если истинно хотя бы одно из составляющих предложений; в разделительном, когда составное предложение считается истинным в случае, если истинно только одно из со­ставляющих предложений, в этом случае иногда говорят или.., или, либо.., либо.

Разбиение множества на классы

Разбиение множества на классы лежит в основе классифици­рующей деятельности.

Обратимся еще раз к диаграмме, изображенной на илл. 4. Здесь мы имеем множество М и два его подмножества Ai~A, удов­летворяющие следующим условиям:

  1. каждое из множеств А и непустое, т. е. Аф0 и ф<2>;

  2. они не пересекаются, т. е. АпА=0;

  3. их объединение образует множество М, т. е. A\JA = М. Условия (1)—(3) определяют разбиение множества М на два

класса и Л).

Рассмотрим теперь диаграмму на илл. 5.

Здесь мы имеем множество М и четыре подмножества: АглВ, АпВ, ~Ас\В, ЪглВ. Обозначим их соответственно через К\, К2, A3, А4.

Нетрудно заметить, что выполняются условия, аналогичные предыдущим:

  1. каждое из множеств К\, Ki, A3, К4 непусто, т. е. А,*0, где/=1, 2, 3,4;

  2. эти множества попарно не пересекаются, т. е. Kf\Kj=<Z, где Щ и i,j = 1, 2, 3, 4;

  3. их объединение образует множество М, т. е. AiuA2uA3uA4 = М.

Объединение 'ЩыК^ШрвЩ состоит из всех тех и только тех элементов, которые принадлежат хотя бы одному из этих мно­жеств К\, Ki, A3, А4.

В этом случае условия (1)—(3) определяют разбиение множест­ва М на четыре класса.

Рассмотрим теперь игру с тремя обручами.

Пусть три разноцветных (например, красный, черный и синий) обруча расположены так, как показано на илл. 6.



Илл. 6
После того как образовавшиеся области (1)—(8) соответству­ющим образом названы (внутри всех трех обручей, внутри красного и черного, но вне синего и т. д.), решается более сложная, чем в игре с двумя обручами, задача классификации блоков (или фигур) по трем свойствам. Предлагается расположить блоки, например, так, чтобы внутри красного обруча оказались все красные блоки, внутри черного — все квадратные, а внутри синего — все большие. После выполнения задачи расположения блоков ставятся восемь стан­дартных для любого варианта игры с тремя обручами вопросов. Какие блоки лежат: 1) внутри всех трех обручей; 2) внутри красного и черного, но вне синего обруча; 3) внутри черного и синего, но вне красного обруча; 4) внутри красного и синего, но вне черного обру­ча; 5) внутри красного, но вне черного и вне синего обруча; 6) внут­ри черного, но вне синего и вне красного обруча; 7) внутри синего, но вне красного и вне черного обруча; 8) вне всех трех обручей?

Как видно на илл. 6, в игре с тремя обручами моделируется разбиение множества на восемь классов:

Ш{ т АпВпС; К2 = АпВиС; Къ = ИглВслС; К4 = АглВпС; К5 = АпВпГ; К6 = InBnC; К7 = InBnC; Ks = InBnC.

И здесь также выполняются условия (1)—(3).

Теперь можно ответить в самом общем виде на вопрос: что такое разбиение множества на классы?

Система множеств К\, К2,... К„ называется разбиением множе­ства М на классы, а сами эти множества — классами разбиения, если выполняются следующие условия:

  1. каждое из множеств К\, К2, ... К„ непустое, т. е. Kj*0, где / = 1, 2, 3,.., я;

  2. эти множества попарно не пересекаются, т. е. Kji~\Kj = 0 для всяких fcj и 1, 2, 3, .., п;

  3. их объединение образует множество М, т. е. К{иК2и...К„ = М.

Если хотя бы одно из условий (1)—(3) не выполняется, то сис­тема множества К\, К2,.., К„ не является разбиением множества М на классы. Например, система множества остроугольных, прямо­угольных и двупрямоугольных треугольников не образует разбие­ние множества всех треугольников, так как множество двупрямо­угольных треугольников, содержащих по два прямых угла, пусто, т.е. не выполняется условие (1). Система множеств остроуголь­ных, прямоугольных и равнобедренных треугольников не образу­ет разбиение множества всех треугольников, так как не выполня­ется условие (2) — множества прямоугольных и равнобедренных треугольников пересекаются (существуют прямоугольные равно­бедренные треугольники). Система множества остроугольных и прямоугольных треугольников не образует разбиения множества треугольников, так как не выполняется условие (3) — объедине­ние множеств остроугольных и прямоугольных треугольников не образует множество всех треугольников.

Отношения между двумя множествами

С целью уточнения вернемся к вопросу об отношении вклю­чения одного множества в другое.

Вообще говоря, в математике различаются два вида включе­ния: в широком смысле (нестрогое включение) и в узком смысле (строгое включение). Первое обозначается знаком с. Запись «AczB» означает, что все элементы Л принадлежат В. При этом воз­можны два случая:

  1. все элементы В принадлежат А, т. е. AczB и ВсА. В этом слу­чае множества An В состоят из одних и тех же элементов и назы­ваются равными, что обозначается так: «А=В». Например, если А — множество всех больших блоков, а В — множество всех бло­ков, которые не являются малыми, то А=В. Как видно, равные множества по существу совпадают (при задании их перечислени­ем элементов они могут отличаться лишь порядком перечисления, который несуществен);

  2. не все элементы В принадлежат А, т. е. AciB, но BczA. В таком случае говорят также, что А строго включается в В — или А является собственной (или правильной) частью В. Это отношение в матема­тической литературе обычно обозначается символом «с» {A(zB).

В предматематической подготовке дошкольников встречается лишь строгое включение, собственная часть множества.

В играх с обручами моделируются и другие отношения, в кото­рых могут находиться два множества. Так, например, множества красных (А) и не красных (Л) блоков не имеют ни одного общего элемента, т. е. их пересечение пусто (АглА = 0). Такие два множест­ва, как мы уже знаем, называются непересекающимися (в литературе встречается и термин «дизъюнктные» множества). Множества красных (А) и квадратных (В) блоков имеют общие элементы (крас­ные квадраты), т. е. их пересечение непусто (АглВф0), причем ни одно из этих множеств не включается в другое, т. е. не является подмножеством другого. Такие два множества называются пересе­кающимися.

Выявление правильных отношений между множествами окру­жающих нас предметов — составная часть формирования и разви­тия представлений дошкольников об окружающем мире. Выработ­ка у дошкольников простейших представлений классификации ок­ружающих предметов является основой для формирования в дальнейшем математического мышления, связанного с моделиро­ванием и исследованием различных математических конструкций, способствует повышению алгоритмической культуры учащихся.

2.2. Отношения
Бинарные отношения

Под бинарным отношением понимают отношение между двумя предметами. Дальше, говоря «отношение», мы будем иметь в виду именно бинарное отношение. Выясним, что интуитивно понима­ют под отношением и как это понятие можно описать математи­чески.

Из курса школьной математики известны многочисленные примеры отношений:

  • между числами: равно, не равно, меньше, больше, не меньше, не больше, делит, делится на;

  • между точками прямой: предшествует, следует за;

  • между прямыми: параллельны, пересекаются, перпендикулярны, скрещиваются;

  • между прямой и плоскостью: параллельны, пересекаются, пер­пендикулярны;

  • между плоскостями: параллельны, пересекаются, перпендику­лярны;

  • между геометрическими фигурами: равно, подобно и др.

Это, разумеется, далеко не полный перечень встречающихся в школьной математике отношений.

Примеры бинарных отношений встречаются не только в ма­тематике, но и всюду в жизни, вокруг нас. Родственные и другие отношения между людьми (быть отцом, дедушкой, матерью, ба­бушкой, братом, сестрой, другом, ровесником; старше, моложе, выше, ниже и др.) выступают как бинарные отношения. Отноше­ния между событиями во времени (раньше, позже, одновременно), между предметами по их расположению в пространстве (выше, ниже, левее, правее, севернее, южнее и др.) также выступают как бинарные отношения.

Всегда, когда речь идет о некотором отношении, имеются в виду два множества А я В; при этом некоторые элементы множе­ства А находятся в данном отношении с некоторыми элементами множества В или того же множества А.

Таким образом, всякое отношение между элементами мно­жеств А и В (или между элементами множества А) порождает мно­жество пар, первые компоненты которых принадлежат А, вто­рые — В (или тоже А), т. е. порождает подмножество АхВ (или АхА), причем такое, что элементы каждой пары и только они на­ходятся в данном отношении.

Всякое отношение между элементами двух множеств А и В полностью характеризуется тремя множествами: А и В, между эле­ментами которых установлено отношение, и некоторым множест­вом пар Р — подмножеством АхВ, т. е. декартовым произведением. Один из путей определения математического понятия отношения и состоит в отождествлении этого понятия с указанной тройкой множеств.

Отношением между элементами непустых множеств А и В на­зывается тройка множеств р=(Р, А, В), где P<zAxB.

Множество пар Р называется графиком отношения р.

Об элементах пары (х, у), принадлежащей графику Р, говорят, что они находятся в отношении р, и записывают это так: «хру».

Таким образом, записи «(х, у)е Р» или «хру» равносильны.

Если В—А, то р=(Р, А, А) называется отношением между эле­ментами множества А.
1   2   3   4   5   6   7   8   9   ...   27

Похожие:

Математического развития icon Учебно-методическое пособие по курсу «методы программирования» для...
Ученым советом механико-математического факультета 29 марта 2005 г., протокол №5
Математического развития icon План работы заместителя директора по увр терентьевой Е. Н
Доведение до учителей школы проекта мгу «Концепция развития математического образования в рф»
Математического развития icon Анализ работы школьного методического объединения учителей математического...
Мо в целом, а в итоге на совершенствование учебно-воспитательного процесса, достижение оптимального уровня образования, воспитания...
Математического развития icon Программа факультативных занятий по математике для III v классов общеобразовательных учреждений
Целью факультативных занятий «Путешествие в страну Занимательной математики» является повышение уровня математического развития учащихся....
Математического развития icon И резервы роста
Вологодского научно-координационного центра Центрального экономико-математического института ран
Математического развития icon Общие вопросы психологии развития
Психология развития и возрастная психология. Психология развития как прикладная отрасль. Основные задачи психологии развития. Связи...
Математического развития icon Методы вычислений с контролем точности на квазиравномерных сетках
Работа выполнена в Институте математического моделирования Российской Академии Наук
Математического развития icon Рабочая программа дисциплины (модуля)
Дисциплина «Возрастная анатомия и физиология» относится к базовой части математического и естественнонаучного цикла б-2 (курс по...
Математического развития icon Бикомпактные разностные схемы и численная диагностика особенностей
Работа выполнена в отделе физико-химических свойств вещества Института математического моделирования ран
Математического развития icon Заседание шмо учителей Естественно математического цикла мкоу«Карахунская сош»
Нормативно-правовая основа разработки программы составлена на основе следующих документов
Литература


При копировании материала укажите ссылку © 2015
контакты
literature-edu.ru
Поиск на сайте

Главная страница  Литература  Доклады  Рефераты  Курсовая работа  Лекции