C:\Users\Юля\Desktop\1\11 2 8 Феррозондовые пмп mht




Скачать 1.11 Mb.
Название C:\Users\Юля\Desktop\1\11 2 8 Феррозондовые пмп mht
страница 4/8
Дата публикации 15.05.2014
Размер 1.11 Mb.
Тип Документы
literature-edu.ru > Лекции > Документы
1   2   3   4   5   6   7   8




Сущность метода магнитопорошкового контроля (МПК).

Магнитопорошковый метод - один из самых распространённых, надёжных и производительных методов неразрушающего контроля поверхностей изделий из ферромагнитных материалов в их производстве и эксплуатации.

МПК - один из четырех классических методов неразрушающего контроля, а также один из наиболее старых методов НК, связанных с применением приборов и дефектоскопических материалов для НК.

Первые опыты описали феномен полей магнитного рассеяния и объяснили их значение. Впоследствии были предприняты попытки найти применение этому явлению и ввести его в техническую практику. В 1868 году англичанин Саксби применил компас для определения дефектов в пушечных стволах. В 1917 году американец Хок применил железные опилки для обнаружения трещин в стальных деталях.

Суть метода такова: магнитный поток в бездефектной части изделия не меняет своего направления; если же на пути его встречаются участки с пониженной магнитной проницаемостью, например дефекты в виде разрыва сплошности металла (трещины, неметаллические включения и т.д.), то часть силовых линий магнитного поля выходит из детали наружу и входит в нее обратно, при этом возникают местные магнитные полюсы (N и S) и, как следствие, магнитное поле над дефектом. Так как магнитное поле над дефектом неоднородно, то на магнитные частицы, попавшие в это поле, действует сила, стремящаяся затянуть частицы в место наибольшей концентрации магнитных силовых линий, то есть к дефекту. Частицы в области поля дефекта намагничиваются и притягиваются друг к другу как магнитные диполи под действием силы так, что образуют цепочные структуры, ориентированные по магнитным силовым линиям поля.

Метод магнитопорошкового контроля предназначен для выявления тонких поверхностных и подповерхностных нарушений сплошности металла – дефектов, распространяющихся вглубь изделий. Такими дефектами могут быть трещины, волосовины, надрывы, флокены, непровары, поры.

Наибольшая вероятность выявления дефектов достигается в случае, когда плоскость дефекта составляет угол 90грд. с направлением намагничивающего поля (магнитного потока). С уменьшением этого угла чувствительность снижается и при углах, существенно меньших 90грд. дефекты могут быть не обнаружены.

Чувствительность МПД определяется:

                                  магнитными характеристиками материала контролируемого изделия (магнитной индукцией (В),

                                 остаточной намагниченностью (Br ),

                                 максимальной магнитной проницаемостью (µmax ),

                                 коэрцитивной силой (Н0),

                                 шероховатостью поверхности контроля,

                                 напряженностью намагничивающего поля, его ориентацией по отношению к плоскости дефекта,

                                 качеством дефектоскопических средств и освещенностью контролируемой поверхности.

Магнитопорошковый метод находит применение практически во всех отраслях промышленности:

                                 металлургия

                                 машиностроение

                                 авиапромышленность

                                 автомобильная промышленность

                                 судостроение

                                 строительство (стальные конструкции, трубопроводы)

                                 энергетическое и химическое машиностроение

                                 транспорт (авиация, железнодорожный, автотранспорт)

Магнитопорошковый метод является самостоятельным технологическим процессом и включает в себя:

                                  подготовку поверхностей изделий к контролю

                                 намагничивание деталей

                                 обработку поверхности детали суспензией (порошком)

                                 осмотр деталей

                                 размагничивание

                                 контроль качества процесса

                                 тренировку и сертификацию персонала

 

Капиллярный метод контроля




 Капиллярный метод неразрушающего контроля (ГОСТ 18442-80) основан на капиллярном проникновении внутрь дефекта индикаторной жидкости, хорошо смачивающей материал объекта контроля (ОК) с последующей регистрацией индикаторных следов.

Данный метод пригоден для выявления несплошностей с поперечными размером 0,1 - 500 мкм, в том числе сквозных, на поверхности черных и цветных металлов, сплавов, керамики, стекла и т.п. Широко применяется для контроля целостности сварного шва. Красящий пенетрант наносится на поверхность ОК. Благодаря особым качествам, которые обеспечиваются подбором определенных физических свойств пенетранта: поверхностного натяжения, вязкости, плотности, он, под действием капиллярных сил, проникает в мельчайшие дефекты, имеющие выход на поверхность объекта контроля. Проявитель, наносимый на поверхность объекта контроля через некоторое время после осторожного удаления с поверхности пенетранта, растворяет находящийся внутри дефекта краситель и за счет диффузии “вытягивает” оставшийся в дефекте пенетрант на поверхность объекта контроля. Имеющиеся дефекты видны достаточно контрастно. Индикаторные следы в виде линий указывают на трещины или царапины, отдельные точки - на поры.

Процесс обнаружения дефектов капиллярным методом разделяется на 5 стадий.

1 стадия – предварительная очистка поверхности. Чтобы краситель мог проникнуть в дефекты на поверхности, ее предварительно следует очистить водой или органическим очистителем. Все загрязняющие вещества (масла, ржавчина, и т.п.) любые покрытия (ЛКП, металлизация) должны быть удалены с контролируемого участка. После этого поверхность высушивается, чтобы внутри дефекта не оставалось воды или очистителя.

2 стадия – нанесение пенетранта Пенетрант, обычно красного цвета, наносится на поверхность путем распыления, кистью или погружением ОК в ванну, для хорошей пропитки и полного покрытия пенетрантом. Как правило, при температуре 5-50 0 С, на время 5-30 мин.

3 стадия - удаление излишков пенетранта Избыток пенетранта удаляется протиркой салфеткой, промыванием водой. Или тем же очистителем, что и на стадии предварительной очистки. При этом пенетрант должен быть удален с поверхности, но никак не из полости дефекта. Поверхность далее высушивается салфеткой без ворса или струей воздуха. Используя при этом очиститель есть риск вымывания пенетранта и неправильной его индикации.

4 стадия – нанесение проявителя. После просушки сразу же на ОК наносится проявитель, обычно белого цвета, тонким ровным слоем. Наиболее удобны распылители, например аэрозольные баллоны. Можно наносить проявитель и окунанием. Сухие проявители наносятся в вихревой камере, либо электростатически. После нанесения проявителя следует выждать время от 5 мин для крупных дефектов, до 1 часа для мелких дефектов. Дефекты будут проявляться, как красные следы на белом фоне.

5 стадия - контроль. Инспектирование ОК начинается непосредственно после окончания процесса проявки и заканчивается согласно разным стандартам не более, чем через 30 мин. Интенсивность окраски говорит о глубине дефекта, чем бледнее окраска, тем дефект мельче. Интенсивную окраску имеют глубокие трещины.

После проведения контроля проявитель удаляется водой или очистителем. Сквозные трещины на тонкостенных изделиях можно обнаруживать, нанося проявитель и пенетрант с разных сторон изделия. Прошедший насквозь краситель будет хорошо виден в слое проявителя. Согласно ГОСТ 18442-80 класс чувствительности контроля определяется в зависимости от размера выявляемых дефектов. В качестве параметра размера дефекта принимается поперечный размер дефекта на поверхности объекта контроля – так называемая ширина раскрытия дефекта.

Нижний порог чувствительности, т.е. минимальная величина раскрытия выявленных дефектов ограничивается тем, что весьма малое количество пенетранта; задержавшееся в полости небольшого дефекта, оказывается недостаточным, чтобы получить контрастную индикацию при данной толщине слоя проявляющего вещества.

Существует также верхний порог чувствительности, который определяется тем, что из широких, но неглубоких дефектов пенетрант вымывается при устранении излишков пенетранта на поверхности.

Установлено 5 классов чувствительности ( по нижнему порогу) в зависимости от размеров дефектов.   

1 класс чувствительности - ширина раскрытия дефекта (мкм) менее 1.  

2.- от 1 до 10.

 3.- от 10 до 100.

 4.- от 100 до 500.

 Технологический.- не нормируется.

 За рубежом установлены другие шкалы чувствительности пенетрантов. Например, в немецком промышленном стандарте DIN 54 152, чувствительность пенетрантов также разделяется на четыре класса, но шкала чувствительности обратная .

Класс чувствительности Ширина раскрытия дефекта, мкм (±20%) Толщина никелевого покрытия, мкм (±10%)

I - низкий                                                  4                                     100

II - средний                                               2                                      60

III - высокий                                             1                                       60

IV – очень высокий                                     0,6                                   50

Чувствительность дефектоскопических материалов определяется на контрольных образцах, т.е. на пластинах определенной шероховатости с заранее нанесенными на них нормированными трещинами. Это, как правило, стальные, алюминиевые или титановые пластины. С помощью контрольных образцов можно судить о возможностях того, или иного набора; степени ухудшения свойств с течением времени; правильности применяемых методик

 

Визуально-оптический метод контроля




Принцип действия и основной результат - осмотр с помощью оптических средств поверхностей объекта контроля на наличие дефектов и аномалий; осуществляется независимо и в сочетании с другими методами контроля.

Физические основы метода.

     Зондирующая среда и/или источник энергии - видимая область спектра (длинноволновая ультрафиолетовая область спектра с флуоресцирующими материалами).

     Характер сигнала и/или информационные характеристики - отраженное, прошедшее, рассеянное и индуцированное излучение.

    Способ детектирования и/или воспритятия - оптические средства, увеличительные стекла, бороскопы, видео- и пленочные фотокамеры.

    Способ индикации и/или регистрации - визуальное изображение.

    Метод расшифровки - анализ изображения; используется в сочетании с другими методами для непосредственной расшифровки (капиллярный, фильтрующихся частиц, магнитопорошковый).

Цели использования.

    Выявление дефектов типа нарушения сплошности - трещины, раковины, поры и включения.

    Измерение размеров и метрология - измерения механическими средствами.

   Определение физико-механических свойств - шероховатость, зерно и пленка.

   Определение компонентного и химического состава.

   Определение динамических характеристик - видимые реакции напряженности слоя.

Области использования.

    Контролируемые материалы - неограниченный круг материалов.

    Объекты контроля и технологические операции - поверхности, слои, пленки, покрытия, целые объекты, контроль и регулирование в производственной линии и вне ее.

   Диагностика - все виды технологических операций и испытаний.

   Примеры - механически обработанные детали, внутренние поверхности, объекты контроля, элементы изделий, узлы и системы.

Ограничения.

   По технологичности - визуальный доступ. Обычно требуются специальные оптические средства.

   По расшифровке  - требуется дополнительное применение других методов контроля для различения, выявления и измерения дефектов.

    По чувствительности и/ или разрешению - различные кратности увеличения.

Родственные методы контроля - бороскопия, рефрактометрия, дифрактометрия, интерферометрия, рефлектометрия, микроскопия, телескопия, радиометрия в видимой области спектра, фазово-контрастный и шлирен-методы.

 Выдержки из статьи "Визуально-оптический метод". Энциклопедия "Машиностроение".


C:\Users\Юля\Desktop\1\МАГНИТНАЯ ПЛЕНКА.mht

МАГНИТНАЯ ПЛЕНКА

Перевод

МАГНИТНАЯ ПЛЕНКА

- слой магн. вещества (обычно ферро- или ферримагнетика) толщиной от долей нанометра до неск. микрометров с рядом особенностей атомно-кристаллич. структуры, магн., электрич. и др. физических свойств, отличающих плёнку от массивных магнетиков.

М. п.- удобный объект исследования свойств твёрдого тела (в т. ч. магнетизма), а также важный материал совр. техники (интегральной электроники, СВЧ-техни-ки и др. отраслей).

Плёнки получают электролитич. осаждением металлов и сплавов, вакуумным испарением и конденсацией вещества на подложке, катодным распылением мишени, выращиванием из раствора-расплава, методами газотранспортных реакций и др. методами.

Структура и свойства плёнок в сильной степени зависят от темп-ры испарения материала и темп-ры подложки, степени вакуума, чистоты подложки, скорости конденсации и угла падения молекулярного (атомного) пучка на подложку. В частности, состояние и чистота поверхности подложки определяют адгезию и прочность М. п.

При большом переохлаждении и пересыщении твёрдого раствора в М. п. возникают фазовая, структурная и субструктурная неравновесности: реализуются мета-стабильные состояния (см. Аморфные магнетики, Металлические стёкла), высокотемпературные модификации и фазы, сильно пересыщенные растворы, создаются большие макро- и микронапряжения (деформации), в поликристаллич. плёнках возникает очень высокая дисперсность кристаллитов и блоков, сильная разорнентация блоков, избыточная концентрация дефектов решётки (вакансий, дислокаций и др.). Большое влияние на свойства плёнок оказывают разномасштабные поры. Монокристаллич. плёнки с совершенной структурой получают выращиванием на монокристаллич. подложках с решёткой близкого структурного типа и с близкими значениями параметра решётки (молекуляр-но-лучевая эпитаксия, газофазная, жидкофазная эпитаксия и др.).

При исследованиях М. п. из-за малого объёма магн. вещества обычно приходится применять высокочувствит. приборы и методы [феррозонд, вибрац. магнитометр, магнитометр на эффекте Джозефсона (см. Сквид), торсионный анизометр, методы магнитного резонанса на СВЧ и др.]. В то же время малая толщина М. п., их прозрачность или зеркальная поверхность позволяют применять для исследования плёнок оптич. и магнитооптич. методы (основанные на Керра эффекте и Фарадея эффекте), эллипсометрию, а также методы просвечивающей электронной микроскопии, обладающие высоким пространств. разрешением.

Принципиальным вопросом физики тонких плёнок является изучение т. н. размерных эффектов (изменение физ. свойств при уменьшении толщины плёнок по сравнению со свойствами массивного магнетика). Изучение температурной зависимости спонтанной намагниченности Ms сверхтонких М. п. позволяет проверять квантовую теорию обменного взаимодействия электронов в двумерных атомных решётках, выявлять поверхностный магнетизм, поверхностную магн. анизотропию. Прямое и косвенное обменное взаимодействие электронов изучается на специально приготовленных плёнках с "модулированной" атомной структурой (система чередующихся магн. и немагн. слоев толщиной в один или неск. нанометров).


Эксперименты показали, что заметное уменьшение М s наступает лишь в М. п. толщиной менее десятка атомных слоев (нм) и у этих же плёнок обнаруживается век-рое снижение темп-ры Кюри. С области низких темп-р Т наблюдается переход от известного Блоха закона , выполняющегося для толстых ферромагн. плёнок, к почти линейному спаду намагниченности с темп-рой в сверхтонких М. п. Правда, такие "олигатомные" плёнки чаще всего уже не являются однородными, а имеют островковую структуру.

Спонтанная намагниченность Ms М. п. определяется не только хим. составом, но и фазовым состоянием конденсата, зависящим от условий осаждения.

Фундам. свойством М. п. является магнитная анизотропия, характеризуемая типом симметрии, ориентацией осей лёгкого намагничивания, энергетич. константами или напряжённостью Н А эффективного поля анизотропии. Наряду с магнитостатич. анизотропией формы и естеств. кристаллографич. магн. анизотропией в монокристаллич. М. п., в текстурированных поликри-сталлич. плёнках (Со, MnBi и др.) может существовать значит. наведённая анизотропия разл. природы: магнитоупругая (магнитострикционная) анизотропия; анизотропия направленного упорядочения атомов, осуществляющегося в процессе роста и термообработки М. п.; анизотропия направленного роста зёрен; ориентация вытянутых пор; анизотропия распределения магн. и немагн. примесей по границам зёрен и др. При осаждении плёнок после термич. испарения в вакууме в М. п. возникает анизотропия, вызванная наклонным падением атомов на подложку с образованием цепочек кристаллитов (механизм самозатенения), с наклонной столбчатой структурой. При эпитаксиальном росте М. п. из жидкой фазы со сложным ионным составом, напр. плёнок редкоземельных ферритов-гранатов, возникает ростовая анизотропия, обусловленная избират. осаждением разл. ионов в "открытые" додекаэдрич. позиции определённой плоскости роста.

Результирующая анизотропия определяет тип магнитной доменной структуры и характер процессов намагничивания М. п. В плёнках с преобладающей анизотропией формы (фактор качества ) спонтанная намагниченность лежит в плоскости образца, и в этом случае образуются вытянутые т. н. плоские магн. домены (ПМД). Осн. процессом перемагничивания таких М. п. вдоль оси лёгкого намагничивания является движение доменных стенок, наблюдается прямоугольная петля гистерезиса с коэрцитивной силой Н с, равной полю старта необратимого смещения стенок (границ).

В плёнках с преобладающей перпендикулярной анизотропией (фактор качества ) ось лёгкого намагничивания (ОЛН) ориентирована по нормали к поверхности. В таких М. п. образуются круглые цилиндрические магнитные домены (ЦМД), плотная полосовая или лабиринтная доменная структура. В чистых, практически бездефектных плёнках петля гистерезиса очень узкая () и наклонённая. В определённом интервале значений внеш. поля H, приложенного вдоль ОЛН, наблюдаются равновесные ЦМД, к-рые легко передвигаются по плёнке под действием неоднородного магн. поля. Эти подвижные ЦМД в феррит-гранатовых М. п. используются в качестве носителей информации в магн. запоминающих устройствах (ЗУ).

К концу 1980-х годов достигнут значит. прогресс в эксперим. и теоретич исследовании М. п.- их магн. микроструктуры, статики и динамики доменной структуры и структуры междоменных стенок. Обнаружено сильное влияние тонкой структуры стенок ("скрученности", наличия в них т. н. Блоха линий и Блоха точек )на их поведение в импульсном и высокочастотном магн. поле. Присутствие линий Блоха, разделяющих разнопо-лярные участки стенки, во-первых, заметно снижает подвижность стенки из-за дополнит. рассеяния эл.-магн. энергии, а во-вторых, вызывает рост эффективной массы "жёсткой" стенки вследствие накопления кинетич. энергии в линиях Блоха, перемещающихся вдоль движущейся стенки (см. Доменной стенки динамика). Разрабатываются запоминающие устройства со сверхвысокой плотностью записанной информации, в к-рых битом является пара вертикальных линий Блоха, продвигающаяся вдоль замкнутой стенки полосового домена в феррит-гранатовых плёнках.

Тонкие М. п. нашли широкое применение в вычислит. технике и автоматике, в оптоэлектронике и интегр. оптике. На базе М. п. возникла новая отрасль науки и техники - магн. микроэлектроника. Плёночная (интегральная) технология позволяет решать актуальные задачи микроминиатюризации элементной базы и схемотехники ЭВМ.

М. п. пришли на смену таких дискретных магн. элементов логич. и запоминающих устройств, как ферритовые сердечники, трансфлюкторы и пластины с отверстиями. Вместо них было предложено использовать матрицы из пермаллоевых пятен толщиной ~100 нм или цилиндрич. М. п. (бронзовые проволоки, покрытые слоем пермаллоя толщиной ок. 1 мкм) с кольцевыми замкнутыми по окружности магн. доменами.

Созданы т. н. доменные ЗУ, в к-рых элементом памяти является магн. домен с определённой поляризацией спонтанной намагниченности. К ним относятся: устройства на плоских магн. доменах, продвигающихся в низкокоэрцитивных каналах; ЗУ на подвижных ЦМД диаметром ок. 1 мкм, на решётках ЦМД. Помимо записи, продвижения, хранения и считывания цифровой информации доменные устройства на М. п. обеспечивают производство осн. логич. операций (т. е. обработку информации). Твердотельные ЗУ на ЦМД обладают высокой надёжностью, компактностью, энергонезависимостью и малой чувствительностью к неблагоприятным внеш. воздействиям. Огромная информац. плотность и ёмкость ЦМД-микросхем делает их конкурентоспособными с ЗУ на магн. дисках и барабанах.

Др. перспективное направление развития информационно-вычислит. систем состоит в разработке магнитооптич. памяти на М. п. (магнитооптич. диски). Это направление предполагает использование лазеров, записи информации термомагн. способом, а считывание - с помощью магнитооптич. эффектов Керра или Фарадея. В качестве реверсивной среды - носителя информации служат М. п. из соединений типа TR (Т - переходный металл, В - редкоземельный элемент), обеспечивающие высокую плотность записи (бит/см 2) и надёжное магнитооптич. считывание. Плёнки с высокой магнитооптич. добротностью (напр., Bi-содержащие феррит-гранатовые плёнки) используются в оптич. дефлекторах и модуляторах, вентильных и переключат. устройствах волоконно-оптич. линий связи.

Магнитно-мягкие (пермаллоевые) плёнки используются при создании магнитопроводов, полюсных наконечников с узким зазором в многоканальных интегр. магн. головках для записи и индукц. считывания информации, для магниторезистивного считывания.

В СВЧ-технике М. п. применяются в виде фильтров поглощения и пропускания, фазовращателей и вентилей в интегр. исполнении. В этих устройствах используются такие явления, как ферромагн. резонанс, спин-волновые эффекты и магнитоакустич. колебания.

Лит.: Тонкие ферромагнитные пленки, пер. с нем., М., 1964; Физика тонких плёнок, пер. с англ., т. 1-8, М., 1967-78; Суху Р., Магнитные тонкие пленки, пер. с англ., М., 1967; Колотов О. С., Погожев В. А., Телеснин Р. В., Методы и аппаратура для исследования импульсных свойств тонких магнитных пленок, М., 1970; Ильюшенко Л. Ф., Электролитически осажденные магнитные пленки, Минск, 1972; Палатник Л. С., Фукс М. Я., Косевич В. М., Механизм образования и субструктура конденсированных пленок, М., 1972; Сухвало С. В., Структура и свойства магнитных пленок железо-никель-кобальтовых сплавов, Минск, 1974; Лесник А. Г., Наведенная магнитная анизотропия, К., 1976; Мочалов В. Д., Магнитная микроэлектроника, М., 1977; Балбашов А. М., Червоненкис А. Я., Магнитные материалы для микроэлектроники, М., 1979; Иванов Р. Д., Магнитные металлические пленки в микроэлектронике, М., 1980; Малоземов А., Слонзуски Дж., Доменные стенки в материалах с цилиндрическими магнитными доменами, пер. с англ., М., 1982; Элементы и устройства на цилиндрических магнитных доменах. Справочник, М., 1987. А. Г. Шишков.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988.
1   2   3   4   5   6   7   8

Похожие:

C:\\Users\\Юля\\Desktop\\1\\11 2 8 Феррозондовые пмп mht icon Строка отображения ответов на текстовые вопросы в виде букв и цифр
Окно подключения Remote Desktop для удалённого управления компьютером через сеть в Видеоролики или Flash ролики с
Литература


При копировании материала укажите ссылку © 2015
контакты
literature-edu.ru
Поиск на сайте

Главная страница  Литература  Доклады  Рефераты  Курсовая работа  Лекции