И их экспериментальные проявления international institute of theoretical & applied physics




Скачать 337.64 Kb.
Название И их экспериментальные проявления international institute of theoretical & applied physics
страница 2/3
Дата публикации 22.05.2014
Размер 337.64 Kb.
Тип Литература
literature-edu.ru > Физика > Литература
1   2   3

2 Торсионные источники энергии
На протяжении последних почти 20-ти лет многие авторы указывали на потенци­альную возможность получения энергии из Физического Вакуума.

Обычными возражениями против практической возможности получения по­ляризационных эффектов в Физическом Вакууме являются ссылки на необхо­димость создания аномально высоких электрических потенциалов порядка 1016 В/см. Эти возражения были бы несомненно справедливы, если бы речь шла о за­рядовых поляризационных состояниях. Но мы обсуждаем спиновую поляризацию Физического Вакуума вообще не электромагнитной природы. Экспериментально наблюдаются пространственно устойчивые Торсионные поляризационные состо­яния. Возможность эффективного взаимодействия спинирующих (вращающихся) объектов с Физическим Вакуумом позволяет рассмотреть с новых позиций воз­можность создания торсионных источников энергии.

Традиционная точка зрения сводится к утверждению, что т.к. Физический Вакуум является системой с минимальной энергией, то никакую энергию из та­кой системы извлечь нельзя. При этом, однако, не учитывается, что Физический Вакуум — это динамическая система, обладающая интенсивными флуктуация­ми, которые и могут быть источником энергии. Полезно отметить соображения Я.Б.Зельдовича, А.Д.Долгова и М.В.Сажина [28], которые, записывая условия для вакуума ak|вак = 0 как отражение состояния без частиц, получили величину вакуумной энергии равную вак|Hk|вак = k/2. Как отмечали авторы, об этой бесконечной энергии попросту забывали, объявляя ее ненаблюдаемой и отсчи­тывая энергию частиц от этого бесконечно высокого уровня.

Рассматривая вакуум как совокупность невзаимодействующих осцилляторов с частотами k можно записать гамильтониан в виде
,

где операторы и ak как обычно операторы рождения и уничтожения. Тогда вакуум как наинизшее энергетическое состояние имеет ненулевую плотность энергии
.

Однако в действительности можно достаточно просто построить численную оцен­ку этой плотности. Согласно Дж.Уиллеру [39], эта оценка дается Планковской плотностью энергии

г/см3
В сравнении с плотностью ядерного вещества — 1014 г/см3 — плотность энергии, связанная с флуктуациями вакуума, является весьма впечатляющей величиной. Известны другие оценки энергии вакуумных флуктуаций, но все они существенно больше оценки Дж.Уиллера.

Сделаем акцент на двух выводах:

1. Энергия вакуумных флуктуаций весьма велика в сравнении с любым другим видом энергии;

2. Малость торсионной энергии, требуемой для спиновой поляризации Фи­зического Вакуума, вселяет надежду, что через торсионные возмущения будет возможно высвобождать энергию вакуумных флуктуаций. С этих позиций экспе­риментальные результаты, полученные в последние десятилетия Муром, Кингом, Нипером и другими, представляющие некую периферию традиционной науки, в которых наблюдалось КПД до 300 - 500 % [50,51], не выглядят недопустимо одиоз­но. Их системы с вращением (типично торсионные установки) как открытые си­стемы за счет слабого взаимодействия с вакуумом получали из вакуума ничтож­ную долю энергии. Очевидно, что указанные теоретические соображения, как и указанные экспериментальные результаты, являют собой лишь слабую щель в двери в энергетику следующего века, экологически чистую и не требующую расхода не только горючих материалов, но расхода любого вещества.

3 Торсионные движители
Новые представления о полях и силах инерции, изложенные в работе [13], по­зволили увидеть их связь с торсионными полями и предсказать существование в природе нового класса систем отсчета, которые были названы [13] ускоренными локально лоренцовыми системами отсчета второго рода. В отличие от ускорен­ных локально лоренцовых систем первого рода, введенных А.Эйнштейном, новые системы образуются в том случае, когда на центр масс изолированной системы действуют скомпенсированные силы инерции.

Простым примером ускоренной локально лоренцовой системы отсчета являет­ся система, связанная с центром масс вращающегося гироскопа. Действительно, на центр масс свободного вращающегося гироскопа действуют скомпенсирован­ные центробежные силы инерции. Поэтому центр масс такого гироскопа покоится или движется прямолинейно и равномерно относительно инерциальной системы наблюдения. Если каким-либо способом нарушить равновесие сил инерции в гироскопе, то центр масс гироскопа будет двигаться ускоренно под действием внутренних нескомпенсированных сил.

Этот вывод не противоречит известной теореме о сохранении импульса центра масс изолированной механической системы. Согласно этой теореме, внутренние силы изолированной системы не могут изменить импульса ее центра масс, причем при доказательстве теоремы использованы следующие условия :

1) внутренние силы удовлетворяют третьему закону Ньютона;

2) внутренними силами являются все те силы, которые действуют во внутрен­нем объеме, ограниченном стенками изолированной системы.

Большинство сил классической механики удовлетворяют первому условию и могут быть разделены на внешние и внутренние согласно второму. Однако в ме­ханике существуют силы, которые не удовлетворяют третьему закону Ньютоня. Таковыми, как известно, являются силы инерции, поскольку нельзя сказать, со стороны каких тел приложены эти силы. Более того, силы инерции не подпадают под второе условие, поскольку они являются одновременно как внутренними. так и внешними для изолированной (в определенном выше смысле) механической системы.

Следовательно, движение механических систем под действием внутренних нес­компенсированных сил инерции не противоречит теореме о сохранении импульса центра масс изолированной системы механики Ньютона, поскольку силы инерции не удовлетворяют условиям, при которых доказана эта теорема

В качестве примера механической системы, центр масс которой движется под действием нескомпенсированных сил инерции, предлагается устройство, которое демонстрирует связь между поступательной и вращательными силами инерции и которое можно назвать четырехмерным гироскопом. Оно состоит из центральной массы М и двух масс т, вращающихся синхронно навстречу друг другу вокруг оси, закрепленной на центральной массе М (см.рис.2).

Если в некоторый момент времени сообщить этой системе механическую энер­гию (например, завращав массы т), то она придет в движение, и мы имеем сле­дующие уравнения движения [13]:

(1)

, (2)
где введены обозначения

.

Рассматриваемая механическая система названа четырехмерным гироскопом по­тому, что в уравнении движения (1) вращение происходит по пространственному углу ф и по пространственно-временному углу , связанным с поступательным ускорением системы соотношением , , где с —скорость света.

Из рис.2 видно, что система отсчета, связанная с центром масс четырехмерного гироскопа, оказывается ускоренной локально лоренцовой системой отсчета второго рода. В этой системе нарушить равновесие сил инерции можно двумя способами:

а) либо воздействуя на нее внешней силой Fe (задача взаимодействия);

б) воздействуя на ось вращения малых грузов внутренним моментом М0 (зада­ча самодействия ).

Четырехмерный гироскоп с самодействием впервые на практике, по-видимому, был осуществлен российским инженером Владимиром Николаевичем Толчиным [48] и был назван им инерциоидом. Работая главным конструкто­ром Пермского машиностроительного завода, В.Н.Толчин изготовил инерциоиды различных типов, ряд характеристик которых приведены в его книге [48]. Кон­структивно инерциоид Толчина выполнен так, что для управления скоростью его центра масс имеется устройство, называемое мотор-тормоз. Назначение этого устройства состоит в том, чтобы осуществлять самодействие инерциоида в секторах 330° — 360° и 160° — 180°, при этом в секторе 330° — 360° происходило увеличение скорости центра масс от 0 до величины порядка 10 см/с, а в секторе 160° — 180° уменьшение скорости центра масс с 10 см/с до 0.

Эксперименты, проделанные В.Н.Толчиным, указывают на реальность суще­ствования нового класса ускоренных систем отсчета — ускоренных локально лоренцовых систем второго рода. Они носят обнадеживающий характер и позволят в будущем создать движитель принципиально нового типа .

4 Торсионные технологии производства материалов
Общеизвестно, что при остывании расплава формирование твердой фазы веще­ства (например, металла) реализуется через два процесса. Ионы в расплаве должны занять места в потенциальных ямах, соответствующих положению узлов кристаллической решетки твердого тела, а спины ионов (атомов) должны быть ориентированы по ребрам решетки так, как это предписывается типом кристал­лической решетки. Последнее обстоятельство используется обычно для объяснения диа- , пара- и ферромагнетизма. Невыполнение любого из этих двух усло­вий приводит к тому, что структура твердого вещества оказывается отличной от естественной, предписываемой традиционными законами физики твердого тела.

В результате действия на расплав внешнего торсионного поля (излучения), например, торсионного генератора, будет изменяться только спиновое состояние системы свободных атомов в расплаве. Если на расплав вещества будет действовать изотропное торсионное излучение, то при достаточном времени воздействия и правильно установленных параметрах расплава все атомы расплава перейдут в состояние однонаправленной ориентации спинов. В таком состоянии через спин-торсионные взаимодействия атомы будут испытывать взаимное притяжение. За счет этого взаимного торсионного притяжения расплав, как спиновая система, будет внутренне устойчив. В результате сильное взаимное торсионное притяже­ние даже при медленном остывании не даст атомам ориентировать свои спины по ребрам кристаллической решетки и решетка не реализуется. Следствием этого будет аморфная структура вещества (металла), структура квазистекла.

С выполнением указанных выше условий при воздействии на расплав торси­онного излучения с неизотропной пространственно-частотной структурой, либо произойдет кристаллизация, но с кристаллической решеткой, "наведенной" ве­ществу установленной структурой внешнего торсионного поля, либо возникнут торсионно индуцированные дефекты кристаллической решетки.

Все указанные варианты теоретически предсказанных результатов воздействия торсионного поля на расплав металлов были экспериментально подтвер­ждены в Институте проблем материаловедения АН Украины в работах совместно с МНТЦ ВЕНТ в период 1989-1993 гг.

На рис.3 показан снимок шлифа олова после контрольной плавки (рис.ЗА) и после плавки при действии на расплав торсионным излучением на частоте 8 Гц (рис.ЗВ). Нетрудно видеть, что обработанный в расплаве металл имеет более крупные зерна почти одинаковые по размерам. Структура металла изотропна в объеме. Исследования показали, что зерна не имеют обычной целостной кристаллической решетки, образуя высокодиспергированное состояние [41]. близкое к абсолютной аморфизации.

В других сериях экспериментов с медью [42] наблюдалось изменение структуры зерен (рис.4А,В), а также появление двойников в результате торсионного воздействия на расплав меди (рис.5А,В).

В период с 1994 по 1995 гг. изменение в структуре и физико-химических свой­ствах металлов было показано на заводских плавильных печах.

Теоретическое предсказание невозможности обычными материалами экрани­ровать торсионные поля было показано на примере торсионных воздействий на расплав металлов в цельнометаллических заземленных печах Таммана. Предска­занный информационный, а не энергетический характер торсионных воздействий был подтвержден в работах, когда структурная перестройка стали в количестве до 200 кг достигалась торсионным генератором, потребляющим 10 мВт электро­энергии.

5 Торсионные средства коммуникации и передачи информации
В традиционных средствах радиосвязи большие требуемые мощности необходи­мы для компенсации ослабления сигналов при прохождении сигналов в свобод­ном пространстве в связи с их ослаблением по закону обратных квадратов, а так же для компенсации потерь при прохождении сигналов через поглощающие среды.

При этом компенсация должна быть осуществлена в такой мере, чтобы пере­даваемый сигнал на входе приемника имел интенсивность, превышающую чув­ствительность этого приемника.

Кроме этого с учетом скорости прохождения радиосигналов уже в спутни­ковых системах связи задержка сигнала создаст определенные трудности. Эти трудности вырастают в серьезные проблемы для связи с аппаратами в дальнем космосе.

Трудности с загоризонтной связью приводят к необходимости строить слож­ные глобальные сети связи с ретрансляторами.

В отдельных случаях радиосвязь может быть реализована не только в области сверхдлинных волн, но, например, и для подземной связи, однако, при этом теряется скорость передачи информации, не говоря уже об очевидных технических труд­ностях.

Ряд задач радиосвязи в принципе неразрешим, как, например, связь со спуска­емыми с орбиты космическими аппаратами, т.к. они экранируются возникающей вокруг этих аппаратов плазмой при входе в плотные слои атмосферы.

Некоторые вопросы радиосвязи не могут быть решены, т.к. действующие си­стемы близки к физически предельным возможностям. Известны системы с про­пускной способностью близкой к Шенноновским пределам.

Все указанные проблемы преодолеваются при использовании торсионной свя­зи [43]. Достаточно указать на три отмечавшихся выше свойства торсионных излучений: торсионные излучения не ослабляются с расстоянием и не поглоща­ются природными средами и имеют групповую скорость не ниже, чем 109 • с.

Так как торсионные сигналы не ослабляются с расстоянием и не поглощаются. то нет необходимости в больших мощностях передатчиков даже на длинных трас­сах. В силу отсутствия поглощения природными средами торсионные сигналы позволяют обеспечивать и подземную, и подводную связь, и связь через плаз­му. При столь высокой групповой скорости можно даже в пределах галактики. а не только солнечной системы, решать задачи связи, управления и навигации в реальном масштабе времени.

Первые эксперименты по передаче двоичных сигналов по торсионному каналу связи были проведены в апреле 1986г. в г.Москве. Торсионный передатчик был установлен на первом этаже здания и не имел устройств типа радиоантенны. которые можно было бы вынести на крышу. Торсионный приемник размещался на втором этаже здания на расстоянии около 22 км (рис.6). При этих условиях торсионный сигнал мог распространяться только по прямой от передатчика к приемнику.

Это означало, что, помимо рельефа местности, с учетом плотности застройки в г.Москве торсионный сигнал должен был преодолеть экран эквивалентный же­лезобетонной стене толщиной более 50 м. Для радиосвязи без ретрансляторе!) это практически неразрешимая задача.

В осуществленных сеансах связи двоичный торсионный сигнал стартстопного телеграфного кода М2 принимался безошибочно при потреблении торсионным передатчиком энергии 30 мВт. В дополнительных экспериментах торсионный передатчик был приведен к приемнику (трасса нулевой длины). При этом интен­сивность регистрируемого сигнала не изменилась. Тем самым было показано. что для торсионной связи, как и предсказывала теория, торсионный сигнал не поглощается и не ослабляется с расстоянием.
1   2   3

Похожие:

И их экспериментальные проявления international institute of theoretical & applied physics icon International labor migration: a theoretical

И их экспериментальные проявления international institute of theoretical & applied physics icon Тома Кэмпбела "Как все устроено или Всеобщая теория"
Заглавие книги: My Big toe a trilogy Unifying Philosophy, Physics, and Metaphysics
И их экспериментальные проявления international institute of theoretical & applied physics icon An International Agency for the Development of Culture, Education and Science (iadces)

И их экспериментальные проявления international institute of theoretical & applied physics icon An International Agency for the Development of Culture, Education and Science (iadces)

И их экспериментальные проявления international institute of theoretical & applied physics icon Феномен провинциального театра: экспериментальные площадки хабаровского края
Охватывает и осознает целую систему идей внутри своей формы [113, c. 12–16]
И их экспериментальные проявления international institute of theoretical & applied physics icon China International Stainless Steel Congress 2013
Азиатско-тихоокеанская международная выставка резиновой и пластиковой промышленности
И их экспериментальные проявления international institute of theoretical & applied physics icon Юрген Граф Миф о холокосте Правда о судьбе евреев во второй мировой...
В издательство «Русский Вестник», с просьбой опубликовать этот материал, обратился Институт пересмотра истории (Institute Historical...
И их экспериментальные проявления international institute of theoretical & applied physics icon Поль л авиолетт – Лед и Огонь. История глобальных катастроф
Публикуется с разрешения inn er tradition international (сша) и агентства Александра Корженевского
И их экспериментальные проявления international institute of theoretical & applied physics icon Внимание 8 классы!!! Домашние творческие и экспериментальные работы по физике
И хотя современная экспериментальная физика для проведения исследований использует дорогостоящую и сложную аппаратуру и технику,...
И их экспериментальные проявления international institute of theoretical & applied physics icon Программа курса «Основы квантовой механики и квантовых вычислений»
Экспериментальные основы квантовой механики. Дифракция электронов. Волна де-Бройля
Литература


При копировании материала укажите ссылку © 2015
контакты
literature-edu.ru
Поиск на сайте

Главная страница  Литература  Доклады  Рефераты  Курсовая работа  Лекции